Semi-Supervised Anomaly Detection Based on Deep Generative Models with Transformer

Weimin Shangguan, Wentao Fan, Ziyi Chen
{"title":"Semi-Supervised Anomaly Detection Based on Deep Generative Models with Transformer","authors":"Weimin Shangguan, Wentao Fan, Ziyi Chen","doi":"10.1145/3529466.3529470","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel semi-supervised anomaly detection approach based on deep generative models with Transformers for identifying unusual (abnormal) images from normal ones. Our approach is based on the combination of autoencoder (AE) and generative adversarial networks (GAN). Similar to the vanilla GAN, our model is mainly composed of the generator and discriminator. The generator adopts an encoder-decoderencoder structure to extract meaningful latent representations, in which each encoder is constructed by a Transformer whereas the decoder is realized through the transposed convolution. The discriminator, which is built upon another Transformer, is used to distinguish whether the given image comes from the generator or the training set, while optimizing the encoder in the generator for better latent representations through adversarial training. The distribution of the normal data can be learned by minimizing the gap between the original image space and the latent image space during the training process. The abnormal images are detected if their distributions are different from the learned normal distributions. The merits of the proposed anomaly detection approach are demonstrated by comparing it with other generative anomaly detection approaches through experiments on three benchmark image data sets.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we propose a novel semi-supervised anomaly detection approach based on deep generative models with Transformers for identifying unusual (abnormal) images from normal ones. Our approach is based on the combination of autoencoder (AE) and generative adversarial networks (GAN). Similar to the vanilla GAN, our model is mainly composed of the generator and discriminator. The generator adopts an encoder-decoderencoder structure to extract meaningful latent representations, in which each encoder is constructed by a Transformer whereas the decoder is realized through the transposed convolution. The discriminator, which is built upon another Transformer, is used to distinguish whether the given image comes from the generator or the training set, while optimizing the encoder in the generator for better latent representations through adversarial training. The distribution of the normal data can be learned by minimizing the gap between the original image space and the latent image space during the training process. The abnormal images are detected if their distributions are different from the learned normal distributions. The merits of the proposed anomaly detection approach are demonstrated by comparing it with other generative anomaly detection approaches through experiments on three benchmark image data sets.
基于变压器深度生成模型的半监督异常检测
在这项工作中,我们提出了一种新的半监督异常检测方法,该方法基于变压器的深度生成模型,用于从正常图像中识别异常(异常)图像。我们的方法是基于自编码器(AE)和生成对抗网络(GAN)的结合。与传统的GAN相似,我们的模型主要由生成器和鉴别器组成。该生成器采用编码器-解码器结构提取有意义的潜在表示,其中每个编码器由一个Transformer构造,而解码器通过转置卷积实现。鉴别器建立在另一个Transformer之上,用于区分给定图像是来自生成器还是来自训练集,同时通过对抗性训练优化生成器中的编码器以获得更好的潜在表示。在训练过程中,可以通过最小化原始图像空间和潜在图像空间之间的差距来学习正态数据的分布。如果异常图像的分布与学习到的正态分布不同,则检测异常图像。通过在三个基准图像数据集上的实验,将该异常检测方法与其他生成异常检测方法进行了比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信