Optimum Design of Scanned Linear Antenna Array Using Sine Cosine Optimization Algorithm

Alhussein Alturfi, S. Goyal, Amrit Kaur
{"title":"Optimum Design of Scanned Linear Antenna Array Using Sine Cosine Optimization Algorithm","authors":"Alhussein Alturfi, S. Goyal, Amrit Kaur","doi":"10.31185/wjcms.135","DOIUrl":null,"url":null,"abstract":"In this article, the side lobe level (SLL) of the radiation pattern is reduced, and the first null beam width (FNBW) is kept constant by synthesizing symmetric scanning Linear Antenna Arrays (LAA), which is done by considering excitation amplitude as the optimization parameter. A Sine cosine algorithm (SCA) is used to achieve this objective. Three different case studies are illustratedin this article to show the effectiveness of SCA in LAA optimization. The results obtained show that the SCA algorithm performs better than Firefly Algorithm (FA), Symbiotic Organisms Search (SOS), and hybrid optimization algorithm based on Grasshopper Optimization Algorithm (GOA) and Antlion Optimization (ALO)","PeriodicalId":224730,"journal":{"name":"Wasit Journal of Computer and Mathematics Science","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Computer and Mathematics Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjcms.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the side lobe level (SLL) of the radiation pattern is reduced, and the first null beam width (FNBW) is kept constant by synthesizing symmetric scanning Linear Antenna Arrays (LAA), which is done by considering excitation amplitude as the optimization parameter. A Sine cosine algorithm (SCA) is used to achieve this objective. Three different case studies are illustratedin this article to show the effectiveness of SCA in LAA optimization. The results obtained show that the SCA algorithm performs better than Firefly Algorithm (FA), Symbiotic Organisms Search (SOS), and hybrid optimization algorithm based on Grasshopper Optimization Algorithm (GOA) and Antlion Optimization (ALO)
基于正弦余弦优化算法的扫描线性天线阵列优化设计
本文以激励幅值为优化参数,合成了对称扫描线性天线阵列(LAA),降低了辐射方向图的旁瓣电平(SLL),保持了第一零波束宽度(FNBW)不变。正弦余弦算法(SCA)用于实现这一目标。本文介绍了三个不同的案例研究,以展示SCA在LAA优化中的有效性。结果表明,SCA算法优于萤火虫算法(FA)、共生生物搜索算法(SOS)以及基于Grasshopper优化算法(GOA)和Antlion优化算法(ALO)的混合优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信