Hyperspectral images unmixing with rare signals

Sylvain Ravel, S. Bourennane, C. Fossati
{"title":"Hyperspectral images unmixing with rare signals","authors":"Sylvain Ravel, S. Bourennane, C. Fossati","doi":"10.1109/EUVIP.2016.7764605","DOIUrl":null,"url":null,"abstract":"Pixels in hyperspectral images are a mixing of source signals. Hyperspectral unmixing is an important issue in image processing. In this paper we consider a linear mixing model. We address the unmixing issue when some \"rare\" source signals are only present in few mixed pixels. We propose a new method based on Non-negative Matrix Factorization (NMF) with known endmembers' number. This method first estimates the abundant source signals. Then it detects pixels which contain the rare signals. Finally it processes those pixels to estimate the rare signals.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pixels in hyperspectral images are a mixing of source signals. Hyperspectral unmixing is an important issue in image processing. In this paper we consider a linear mixing model. We address the unmixing issue when some "rare" source signals are only present in few mixed pixels. We propose a new method based on Non-negative Matrix Factorization (NMF) with known endmembers' number. This method first estimates the abundant source signals. Then it detects pixels which contain the rare signals. Finally it processes those pixels to estimate the rare signals.
高光谱图像与稀有信号的分离
高光谱图像中的像素是源信号的混合。高光谱解混是图像处理中的一个重要问题。本文考虑一个线性混合模型。当一些“稀有”源信号仅存在于少数混合像素中时,我们解决了解混问题。提出了一种基于端元数已知的非负矩阵分解(NMF)方法。该方法首先对丰富的源信号进行估计。然后它检测包含稀有信号的像素。最后对这些像素进行处理,估计出罕见信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信