Image reconstruction using the Viterbi algorithm

C. Miller, B. Hunt, M. Neifeld, M. Marcellin
{"title":"Image reconstruction using the Viterbi algorithm","authors":"C. Miller, B. Hunt, M. Neifeld, M. Marcellin","doi":"10.1109/IAI.1998.666878","DOIUrl":null,"url":null,"abstract":"Many systems in widespread use concentrate on the imaging of binary objects, e.g., the archival storage of text documents on microfilm or the facsimile transmission of text. Due to the imperfect nature of such systems, the binary image is unavoidably corrupted by blur and noise to form a grey-scale image. We present a technique to reverse this degradation which maps the binary object reconstruction problem into a Viterbi state-trellis. We assign states of the trellis to possible outcomes of the reconstruction estimate and search the trellis in the usual optimal fashion. Our method yields superior estimates of the original binary object over a wide range of signal-to-noise ratios (SNR) when compared with conventional Wiener filter (WF) estimates. For moderate blur and SNR levels, the estimates produced approach the maximum likelihood (ML) bound on estimation performance.","PeriodicalId":373701,"journal":{"name":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1998.666878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many systems in widespread use concentrate on the imaging of binary objects, e.g., the archival storage of text documents on microfilm or the facsimile transmission of text. Due to the imperfect nature of such systems, the binary image is unavoidably corrupted by blur and noise to form a grey-scale image. We present a technique to reverse this degradation which maps the binary object reconstruction problem into a Viterbi state-trellis. We assign states of the trellis to possible outcomes of the reconstruction estimate and search the trellis in the usual optimal fashion. Our method yields superior estimates of the original binary object over a wide range of signal-to-noise ratios (SNR) when compared with conventional Wiener filter (WF) estimates. For moderate blur and SNR levels, the estimates produced approach the maximum likelihood (ML) bound on estimation performance.
使用Viterbi算法进行图像重建
许多广泛使用的系统集中于二进制对象的成像,例如,在缩微胶卷上的文本文件档案储存或文本的传真传输。由于这种系统的不完善性,二值图像不可避免地会受到模糊和噪声的破坏,从而形成灰度图像。我们提出了一种逆转这种退化的技术,该技术将二进制对象重建问题映射到Viterbi状态网格中。我们将网格的状态分配给重建估计的可能结果,并以通常的最优方式搜索网格。与传统的维纳滤波(WF)估计相比,我们的方法在广泛的信噪比(SNR)范围内对原始二进制对象进行了优越的估计。对于中等模糊和信噪比水平,产生的估计接近估计性能的最大似然(ML)界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信