Causal Discovery and Causal Inference Based Counterfactual Fairness in Machine Learning

Yajing Wang, Zongwei Luo
{"title":"Causal Discovery and Causal Inference Based Counterfactual Fairness in Machine Learning","authors":"Yajing Wang, Zongwei Luo","doi":"10.1109/ICASSP49357.2023.10095194","DOIUrl":null,"url":null,"abstract":"The fairness problem arouses attention in machine learning. One problem with traditional counterfactual fairness is the assumed causal models are constrained by prior knowledge. We propose a framework named Structural Causal Fairness Framework (SCFF) to achieve counterfactual fairness without assumptions like previous works. To correct observations adversely affected by the sensitive attributes, we follow the objectives of fair sampling and construct structural causal models based on causal discovery and causal inference. Experiments show our framework generates competitive results on both counterfactual fairness level and prediction accuracy compared with the other three baselines. More importantly, our framework is all based on data and has good generalization on machine learning problems.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fairness problem arouses attention in machine learning. One problem with traditional counterfactual fairness is the assumed causal models are constrained by prior knowledge. We propose a framework named Structural Causal Fairness Framework (SCFF) to achieve counterfactual fairness without assumptions like previous works. To correct observations adversely affected by the sensitive attributes, we follow the objectives of fair sampling and construct structural causal models based on causal discovery and causal inference. Experiments show our framework generates competitive results on both counterfactual fairness level and prediction accuracy compared with the other three baselines. More importantly, our framework is all based on data and has good generalization on machine learning problems.
机器学习中基于反事实公平性的因果发现和因果推理
公平性问题在机器学习中引起了广泛的关注。传统反事实公平性的一个问题是假设的因果模型受到先验知识的约束。我们提出了一个名为结构因果公平框架(SCFF)的框架来实现反事实公平,而不像以前的研究那样假设。为了纠正敏感属性对观测结果的不利影响,我们遵循公平抽样的目标,构建了基于因果发现和因果推理的结构性因果模型。实验表明,与其他三个基线相比,我们的框架在反事实公平水平和预测精度上都产生了竞争结果。更重要的是,我们的框架都是基于数据的,对机器学习问题有很好的泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信