A simulation evaluation of gCBHD formula for driftless nonholonomic systems

I. Dulęba, Arkadiusz Mielczarek
{"title":"A simulation evaluation of gCBHD formula for driftless nonholonomic systems","authors":"I. Dulęba, Arkadiusz Mielczarek","doi":"10.1109/MMAR.2017.8046825","DOIUrl":null,"url":null,"abstract":"In this paper an accuracy of local motion planning based on the generalized Campbell-Baker-Hausdorff-Dynkin formula was evaluated for a few nonholonomic robotic systems. For a given set of controls, an exact trajectory is computable via an integration of equations of motion. This reference trajectory is compared with with a trajectory based on shrinked versions of the gCBHD formula. An impact of controls (linear time and amplitude scaling, their rotations) on the accuracy of reaching the final goal (important in motion planning) and retrieving a shape of the trajectory (important while avoiding obstacles) will be discussed and illustrated with simulations.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper an accuracy of local motion planning based on the generalized Campbell-Baker-Hausdorff-Dynkin formula was evaluated for a few nonholonomic robotic systems. For a given set of controls, an exact trajectory is computable via an integration of equations of motion. This reference trajectory is compared with with a trajectory based on shrinked versions of the gCBHD formula. An impact of controls (linear time and amplitude scaling, their rotations) on the accuracy of reaching the final goal (important in motion planning) and retrieving a shape of the trajectory (important while avoiding obstacles) will be discussed and illustrated with simulations.
无漂非完整系统gCBHD公式的仿真评价
本文评价了基于广义Campbell-Baker-Hausdorff-Dynkin公式的非完整机器人系统局部运动规划的精度。对于给定的一组控制,通过运动方程的积分可以计算出精确的轨迹。将此参考轨迹与基于gCBHD公式的缩小版本的轨迹进行比较。控制(线性时间和幅度缩放,它们的旋转)对达到最终目标的准确性(在运动规划中很重要)和检索轨迹形状(在避免障碍物时很重要)的影响将通过模拟进行讨论和说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信