{"title":"Wimpy node clusters: what about non-wimpy workloads?","authors":"Willis Lang, J. Patel, S. Shankar","doi":"10.1145/1869389.1869396","DOIUrl":null,"url":null,"abstract":"The high cost associated with powering servers has introduced new challenges in improving the energy efficiency of clusters running data processing jobs. Traditional high-performance servers are largely energy inefficient due to various factors such as the over-provisioning of resources. The increasing trend to replace traditional high-performance server nodes with low-power low-end nodes in clusters has recently been touted as a solution to the cluster energy problem. However, the key tacit assumption that drives such a solution is that the proportional scale-out of such low-power cluster nodes results in constant scaleup in performance. This paper studies the validity of such an assumption using measured price and performance results from a low-power Atom-based node and a traditional Xeon-based server and a number of published parallel scaleup results. Our results show that in most cases, computationally complex queries exhibit disproportionate scaleup characteristics which potentially makes scale-out with low-end nodes an expensive and lower performance solution.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869389.1869396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
The high cost associated with powering servers has introduced new challenges in improving the energy efficiency of clusters running data processing jobs. Traditional high-performance servers are largely energy inefficient due to various factors such as the over-provisioning of resources. The increasing trend to replace traditional high-performance server nodes with low-power low-end nodes in clusters has recently been touted as a solution to the cluster energy problem. However, the key tacit assumption that drives such a solution is that the proportional scale-out of such low-power cluster nodes results in constant scaleup in performance. This paper studies the validity of such an assumption using measured price and performance results from a low-power Atom-based node and a traditional Xeon-based server and a number of published parallel scaleup results. Our results show that in most cases, computationally complex queries exhibit disproportionate scaleup characteristics which potentially makes scale-out with low-end nodes an expensive and lower performance solution.