Power System Reliability Evaluation using Monte Carlo Simulation and Multi Label Classifier

Dogan Urgun, C. Singh
{"title":"Power System Reliability Evaluation using Monte Carlo Simulation and Multi Label Classifier","authors":"Dogan Urgun, C. Singh","doi":"10.1109/NPSC.2018.8771816","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for evaluation of power systems reliability indices. In this study, a combination of Monte Carlo Simulation (MCS) and Multilabel Radial Basis Function (MLRBF) classifier is used for computing system reliability indices. Multilabel classification algorithms is different from single label approaches, in which each instance can be assigned into multiple classes. This study shows that MLRBF can be used to classify composite power system states (success or failure) without requiring optimal power flow (OPF) analysis, with exception of training phase. Therefore, this approach shows that the computational efficiency of the reliability evaluation analysis to evaluate reliability indices can be significantly increased. The proposed method is applied to the IEEE Reliability Test System (IEEE-RTS-79) for different load levels. The outcomes of case studies show that MLRBF algorithm provides good classification accuracy in reliability evaluation while reducing computation time substantially.","PeriodicalId":185930,"journal":{"name":"2018 20th National Power Systems Conference (NPSC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th National Power Systems Conference (NPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NPSC.2018.8771816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new method for evaluation of power systems reliability indices. In this study, a combination of Monte Carlo Simulation (MCS) and Multilabel Radial Basis Function (MLRBF) classifier is used for computing system reliability indices. Multilabel classification algorithms is different from single label approaches, in which each instance can be assigned into multiple classes. This study shows that MLRBF can be used to classify composite power system states (success or failure) without requiring optimal power flow (OPF) analysis, with exception of training phase. Therefore, this approach shows that the computational efficiency of the reliability evaluation analysis to evaluate reliability indices can be significantly increased. The proposed method is applied to the IEEE Reliability Test System (IEEE-RTS-79) for different load levels. The outcomes of case studies show that MLRBF algorithm provides good classification accuracy in reliability evaluation while reducing computation time substantially.
基于蒙特卡罗仿真和多标签分类器的电力系统可靠性评估
提出了一种电力系统可靠性指标评估的新方法。本研究采用蒙特卡罗仿真(MCS)和多标签径向基函数(MLRBF)分类器相结合的方法计算系统可靠性指标。多标签分类算法不同于单标签方法,在单标签方法中,每个实例可以分配到多个类中。本研究表明,除了训练阶段外,MLRBF可以在不需要最优潮流(OPF)分析的情况下对电力系统的复合状态(成功或失败)进行分类。因此,该方法可以显著提高可靠性评估分析对可靠性指标进行评估的计算效率。将该方法应用于IEEE可靠性测试系统(IEEE- rts -79)的不同负荷水平。实例研究结果表明,MLRBF算法在可靠性评估中具有较好的分类精度,同时大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信