Study on Deep Learning and Its Application in Visual Tracking

Dan Hu, Xingshe Zhou, Xiaohao Yu, Z. Hou
{"title":"Study on Deep Learning and Its Application in Visual Tracking","authors":"Dan Hu, Xingshe Zhou, Xiaohao Yu, Z. Hou","doi":"10.1109/BWCCA.2015.63","DOIUrl":null,"url":null,"abstract":"Inspired by recent advances in deep learning, this paper reviews the deep learning methodologies and its applications in object tracking. To overcome the complexity and low-efficiency of existing full-connected deep learning based tracker, we use a novel convolutional deep belief network (CDBN) with convolution, weights sharing and pooling to have much fewer parameters, in addition to gain translation invariance which would benefit the tracker performance. Empirical evaluation demonstrates our CDBN based tracker outperforms several state-of-the-art methods on an open tracker benchmark.","PeriodicalId":193597,"journal":{"name":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2015.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Inspired by recent advances in deep learning, this paper reviews the deep learning methodologies and its applications in object tracking. To overcome the complexity and low-efficiency of existing full-connected deep learning based tracker, we use a novel convolutional deep belief network (CDBN) with convolution, weights sharing and pooling to have much fewer parameters, in addition to gain translation invariance which would benefit the tracker performance. Empirical evaluation demonstrates our CDBN based tracker outperforms several state-of-the-art methods on an open tracker benchmark.
深度学习及其在视觉跟踪中的应用研究
受深度学习最新进展的启发,本文综述了深度学习方法及其在目标跟踪中的应用。为了克服现有基于全连接深度学习的跟踪器的复杂性和低效率,我们使用了一种新颖的卷积深度信念网络(CDBN),该网络结合了卷积、权值共享和池化,具有更少的参数,并且具有平移不变性,从而有利于跟踪器的性能。经验评估表明,我们基于CDBN的跟踪器在开放跟踪器基准上优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信