Texture synthesis using asymmetric 2-D noncausal AR models

Jitendra Tugnait
{"title":"Texture synthesis using asymmetric 2-D noncausal AR models","authors":"Jitendra Tugnait","doi":"10.1109/HOST.1993.264594","DOIUrl":null,"url":null,"abstract":"The author investigates the suitability of two-dimensional (2-D), noncausal, autoregressive (AR) models with possibly asymmetric support for synthesis of images visually similar to natural textures. These models characterize the gray level at an image pixel as a linear combination of gray levels at nearby locations in all directions and an additive non-Gaussian, higher-order white noise variable. Existing results based upon the second-order statistics of the images assume that the model support is symmetric, whereas the author exploits higher-order statistics of the image to fit AR models with possibly asymmetric support. Experimental results of synthesis of 128*128 textures visually resembling several real life textures in the Brodatz album (and other sources) are presented. The synthetic textures are generated using models obtained from real images via inverse filter criteria.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The author investigates the suitability of two-dimensional (2-D), noncausal, autoregressive (AR) models with possibly asymmetric support for synthesis of images visually similar to natural textures. These models characterize the gray level at an image pixel as a linear combination of gray levels at nearby locations in all directions and an additive non-Gaussian, higher-order white noise variable. Existing results based upon the second-order statistics of the images assume that the model support is symmetric, whereas the author exploits higher-order statistics of the image to fit AR models with possibly asymmetric support. Experimental results of synthesis of 128*128 textures visually resembling several real life textures in the Brodatz album (and other sources) are presented. The synthetic textures are generated using models obtained from real images via inverse filter criteria.<>
基于非对称二维非因果AR模型的纹理合成
作者研究了二维(2-D)、非因果、自回归(AR)模型的适用性,该模型可能具有不对称支持,用于合成视觉上类似于自然纹理的图像。这些模型将图像像素的灰度级别描述为所有方向附近位置灰度级别的线性组合,以及加性的非高斯高阶白噪声变量。基于图像二阶统计量的现有结果假设模型支持是对称的,而作者利用图像的高阶统计量来拟合可能具有不对称支持的AR模型。实验结果的合成128*128纹理视觉上类似于几个现实生活中的纹理在Brodatz专辑(和其他来源)。合成纹理是通过反滤波标准从真实图像中获得的模型生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信