A study on Deep Neural Networks framework

Huang Yi, Sun Shiyu, Duan Xiusheng, Chen Zhigang
{"title":"A study on Deep Neural Networks framework","authors":"Huang Yi, Sun Shiyu, Duan Xiusheng, Chen Zhigang","doi":"10.1109/IMCEC.2016.7867471","DOIUrl":null,"url":null,"abstract":"Deep neural networks(DNN) is an important method for machine learning, which has been widely used in many fields. Compared with the shallow neural networks(NN), DNN has better feature expression and the ability to fit the complex mapping. In this paper, we first introduce the background of the development of the DNN, and then introduce several typical DNN model, including deep belief networks(DBN), stacked autoencoder(SAE) and deep convolution neural networks(DCNN), finally research its applications from three aspects and prospects the development direction of DNN.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Deep neural networks(DNN) is an important method for machine learning, which has been widely used in many fields. Compared with the shallow neural networks(NN), DNN has better feature expression and the ability to fit the complex mapping. In this paper, we first introduce the background of the development of the DNN, and then introduce several typical DNN model, including deep belief networks(DBN), stacked autoencoder(SAE) and deep convolution neural networks(DCNN), finally research its applications from three aspects and prospects the development direction of DNN.
深度神经网络框架研究
深度神经网络(Deep neural networks, DNN)是机器学习的一种重要方法,在许多领域得到了广泛的应用。与浅层神经网络相比,深度神经网络具有更好的特征表达和对复杂映射的拟合能力。本文首先介绍了深度神经网络的发展背景,然后介绍了几种典型的深度神经网络模型,包括深度信念网络(DBN)、堆叠自编码器(SAE)和深度卷积神经网络(DCNN),最后从三个方面对其应用进行了研究,并展望了深度神经网络的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信