Prerequisite-Driven Deep Knowledge Tracing

Penghe Chen, Yu Lu, V. Zheng, Yang Pian
{"title":"Prerequisite-Driven Deep Knowledge Tracing","authors":"Penghe Chen, Yu Lu, V. Zheng, Yang Pian","doi":"10.1109/ICDM.2018.00019","DOIUrl":null,"url":null,"abstract":"Knowledge tracing serves as the key technique in the computer supported education environment (e.g., intelligent tutoring systems) to model student's knowledge states. While the Bayesian knowledge tracing and deep knowledge tracing models have been developed, the sparseness of student's exercise data still limits knowledge tracing's performance and applications. In order to address this issue, we advocate for and propose to incorporate the knowledge structure information, especially the prerequisite relations between pedagogical concepts, into the knowledge tracing model. Specifically, by considering how students master pedagogical concepts and their prerequisites, we model prerequisite concept pairs as ordering pairs. With a proper mathematical formulation, this property can be utilized as constraints in designing knowledge tracing model. As a result, the obtained model can have a better performance on student concept mastery prediction. In order to evaluate this model, we test it on five different real world datasets, and the experimental results show that the proposed model achieves a significant performance improvement by comparing with three knowledge tracing models.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

Knowledge tracing serves as the key technique in the computer supported education environment (e.g., intelligent tutoring systems) to model student's knowledge states. While the Bayesian knowledge tracing and deep knowledge tracing models have been developed, the sparseness of student's exercise data still limits knowledge tracing's performance and applications. In order to address this issue, we advocate for and propose to incorporate the knowledge structure information, especially the prerequisite relations between pedagogical concepts, into the knowledge tracing model. Specifically, by considering how students master pedagogical concepts and their prerequisites, we model prerequisite concept pairs as ordering pairs. With a proper mathematical formulation, this property can be utilized as constraints in designing knowledge tracing model. As a result, the obtained model can have a better performance on student concept mastery prediction. In order to evaluate this model, we test it on five different real world datasets, and the experimental results show that the proposed model achieves a significant performance improvement by comparing with three knowledge tracing models.
先决条件驱动的深度知识跟踪
知识跟踪是计算机支持的教育环境(如智能辅导系统)中建模学生知识状态的关键技术。虽然贝叶斯知识跟踪和深度知识跟踪模型已经发展起来,但学生习题数据的稀疏性仍然限制了知识跟踪的性能和应用。为了解决这一问题,我们主张并建议将知识结构信息,特别是教学概念之间的前提关系,纳入到知识追踪模型中。具体而言,通过考虑学生如何掌握教学概念及其先决条件,我们将先决条件概念对建模为排序对。通过适当的数学表达式,可以将这一性质作为设计知识跟踪模型的约束。结果表明,所得模型对学生概念掌握的预测效果较好。为了评估该模型,我们在五个不同的真实世界数据集上对其进行了测试,实验结果表明,与三种知识跟踪模型相比,该模型的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信