Wajahat Akbar, Muhammad Inam Ul Haq, A. Soomro, Sher Muhammad Daudpota, Ali Shariq Imran, M. Ullah
{"title":"Automated Report Generation: A GRU Based Method for Chest X-Rays","authors":"Wajahat Akbar, Muhammad Inam Ul Haq, A. Soomro, Sher Muhammad Daudpota, Ali Shariq Imran, M. Ullah","doi":"10.1109/iCoMET57998.2023.10099311","DOIUrl":null,"url":null,"abstract":"Radiology reports are the primary medium through which physicians communicate with patients and share diagnoses from medical scans. Examples include radiology reports for chest X-Rays and CT scans. Chest X-Ray images are frequently employed in clinical screening and diagnosis. However, writing medical reports for the X-Ray is tedious, error-prone, and time-consuming, even for experienced radiologists. The modern world of clinical practice demands that a radiologist with specialized training manually evaluate chest X-Ray and report the findings. Therefore, this paper explores the ability of artificial intelligence (AI) to automate diagnosing diseases through chest X-Rays and accurately generate radiology reports to alleviate the burdens of medical doctors. Automating this manual process could streamline a clinical workflow, and healthcare quality could be improved. The conventional AI-based abstract methods provide fluent but clinically incorrect radiology reports. The proposed Gated Recurrent Unit (GRU) based model provides both stan-dard language generation and clinical coherence. The model is evaluated on the Indiana University dataset with commonly-used metrics BLEU and ROUGE-L. Empirical evaluations illustrate that the proposed approach can make more precise diagnoses and generate more fluent and precise reports than existing baselines.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Radiology reports are the primary medium through which physicians communicate with patients and share diagnoses from medical scans. Examples include radiology reports for chest X-Rays and CT scans. Chest X-Ray images are frequently employed in clinical screening and diagnosis. However, writing medical reports for the X-Ray is tedious, error-prone, and time-consuming, even for experienced radiologists. The modern world of clinical practice demands that a radiologist with specialized training manually evaluate chest X-Ray and report the findings. Therefore, this paper explores the ability of artificial intelligence (AI) to automate diagnosing diseases through chest X-Rays and accurately generate radiology reports to alleviate the burdens of medical doctors. Automating this manual process could streamline a clinical workflow, and healthcare quality could be improved. The conventional AI-based abstract methods provide fluent but clinically incorrect radiology reports. The proposed Gated Recurrent Unit (GRU) based model provides both stan-dard language generation and clinical coherence. The model is evaluated on the Indiana University dataset with commonly-used metrics BLEU and ROUGE-L. Empirical evaluations illustrate that the proposed approach can make more precise diagnoses and generate more fluent and precise reports than existing baselines.