Fusion of gait and fingerprint for user authentication on mobile devices

M. Derawi, D. Gafurov, R. Larsen, C. Busch, Patrick A. H. Bours
{"title":"Fusion of gait and fingerprint for user authentication on mobile devices","authors":"M. Derawi, D. Gafurov, R. Larsen, C. Busch, Patrick A. H. Bours","doi":"10.1109/IWSCN.2010.5497989","DOIUrl":null,"url":null,"abstract":"A new multi-modal biometric authentication approach using gait signals and fingerprint images as biometric traits is proposed. The individual comparison scores derived from the gait and fingers are normalized using four methods (min-max, z-score, median absolute deviation, tangent hyperbolic) and then four fusion approaches (simple sum, user-weighting, maximum score and minimum core) are applied. Gait samples are obtained by using a dedicated accelerometer sensor attached to the hip. The proposed method is evaluated using 7200 fingerprint images and gait samples. Fingerprints are collected by a capacitive line sensor, an optical sensor with total internal reflection and a touch-less optical sensor. The fusion results of these two biometrics show an improved performance and a large step closer for user authentication on mobile devices.","PeriodicalId":217163,"journal":{"name":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSCN.2010.5497989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A new multi-modal biometric authentication approach using gait signals and fingerprint images as biometric traits is proposed. The individual comparison scores derived from the gait and fingers are normalized using four methods (min-max, z-score, median absolute deviation, tangent hyperbolic) and then four fusion approaches (simple sum, user-weighting, maximum score and minimum core) are applied. Gait samples are obtained by using a dedicated accelerometer sensor attached to the hip. The proposed method is evaluated using 7200 fingerprint images and gait samples. Fingerprints are collected by a capacitive line sensor, an optical sensor with total internal reflection and a touch-less optical sensor. The fusion results of these two biometrics show an improved performance and a large step closer for user authentication on mobile devices.
基于步态和指纹融合的移动设备用户认证
提出了一种以步态信号和指纹图像为特征的多模态生物特征认证方法。采用min-max、z-score、中位数绝对偏差和正切双曲线四种方法对步态和手指的个体比较得分进行归一化,然后采用简单和、用户加权、最大得分和最小核心四种融合方法。步态样本是通过附着在臀部的专用加速度计传感器获得的。利用7200张指纹图像和步态样本对该方法进行了验证。指纹采集采用电容式线传感器、全内反射光学传感器和非接触式光学传感器。两种生物特征的融合结果表明,在移动设备上的用户身份验证方面,性能有了很大的提高,距离用户身份验证又近了一大步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信