Multimodality Weight and Score Fusion for SLAM

Thangarajah Akilan, E. Johnson, Gaurav Taluja, Japneet Sandhu, Ritika Chadha
{"title":"Multimodality Weight and Score Fusion for SLAM","authors":"Thangarajah Akilan, E. Johnson, Gaurav Taluja, Japneet Sandhu, Ritika Chadha","doi":"10.1109/CCECE47787.2020.9255714","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization And Mapping (SLAM) is used to predict the trajectory by the Autonomous Navigation Robots (ANR), for instance Self-Driving Cars (SDC). It computes the trajectory through sensing the surroundings, like a visual perception of the environment. This work focuses on the performance improvements of a SLAM model using multimodal learning: (i), early fusion via layer weight enhancement of feature extractors, and (ii), late fusion via score refinement of the trajectory (pose) regressor. The comparative analysis on Apolloscape dataset shows that the proposed fusion strategies improve localization performance significantly. This work also evaluates applicability of various Deep Convolutional Neural Networks (DCNNs) for SLAM.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Simultaneous Localization And Mapping (SLAM) is used to predict the trajectory by the Autonomous Navigation Robots (ANR), for instance Self-Driving Cars (SDC). It computes the trajectory through sensing the surroundings, like a visual perception of the environment. This work focuses on the performance improvements of a SLAM model using multimodal learning: (i), early fusion via layer weight enhancement of feature extractors, and (ii), late fusion via score refinement of the trajectory (pose) regressor. The comparative analysis on Apolloscape dataset shows that the proposed fusion strategies improve localization performance significantly. This work also evaluates applicability of various Deep Convolutional Neural Networks (DCNNs) for SLAM.
SLAM的多模态权重和分数融合
同步定位和映射(SLAM)用于自动驾驶汽车(SDC)等自主导航机器人(ANR)的轨迹预测。它通过感知周围环境来计算轨迹,就像对环境的视觉感知一样。这项工作的重点是使用多模态学习提高SLAM模型的性能:(i)通过特征提取器的层权重增强进行早期融合,以及(ii)通过轨迹(姿态)回归器的分数细化进行后期融合。在Apolloscape数据集上的对比分析表明,所提出的融合策略显著提高了定位性能。这项工作还评估了各种深度卷积神经网络(DCNNs)在SLAM中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信