{"title":"Bloch’s cycle complex and coherent dualizing complexes in positive characteristic","authors":"Fei Ren","doi":"10.1090/btran/119","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a separated scheme of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of finite type over a perfect field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of positive characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this work, we show that Bloch’s cycle complex <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript upper X Superscript c\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mi>c</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^c_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of zero cycles mod <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is quasi-isomorphic to the Cartier operator fixed part of a certain dualizing complex from coherent duality theory. From this we obtain new vanishing results for the higher Chow groups of zero cycles with mod <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coefficients for singular varieties.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let XX be a separated scheme of dimension dd of finite type over a perfect field kk of positive characteristic pp. In this work, we show that Bloch’s cycle complex ZXc\mathbb {Z}^c_X of zero cycles mod pnp^n is quasi-isomorphic to the Cartier operator fixed part of a certain dualizing complex from coherent duality theory. From this we obtain new vanishing results for the higher Chow groups of zero cycles with mod pnp^n coefficients for singular varieties.
设X X是在具有正特征p p的完美域k k上的一维有限型分离格式。本文从相干对偶理论出发,证明了零循环模p n p^n的Bloch循环复形Z X c \mathbb {Z}^c_X与某对偶复形的Cartier算子固定部分是拟同构的。由此,我们得到了奇异变异体具有模p n p^n系数的零环高Chow群的新的消失结果。