Fingerprint minutiae extraction using deep learning

L. N. Darlow, Benjamin Rosman
{"title":"Fingerprint minutiae extraction using deep learning","authors":"L. N. Darlow, Benjamin Rosman","doi":"10.1109/BTAS.2017.8272678","DOIUrl":null,"url":null,"abstract":"The high variability of fingerprint data (owing to, e.g., differences in quality, moisture conditions, and scanners) makes the task of minutiae extraction challenging, particularly when approached from a stance that relies on tunable algorithmic components, such as image enhancement. We pose minutiae extraction as a machine learning problem and propose a deep neural network — MENet, for Minutiae Extraction Network — to learn a data-driven representation of minutiae points. By using the existing capabilities of several minutiae extraction algorithms, we establish a voting scheme to construct training data, and so train MENet in an automated fashion on a large dataset for robustness and portability, thus eliminating the need for tedious manual data labelling. We present a post-processing procedure that determines precise minutiae locations from the output of MENet. We show that MENet performs favourably in comparisons against existing minutiae extractors.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

The high variability of fingerprint data (owing to, e.g., differences in quality, moisture conditions, and scanners) makes the task of minutiae extraction challenging, particularly when approached from a stance that relies on tunable algorithmic components, such as image enhancement. We pose minutiae extraction as a machine learning problem and propose a deep neural network — MENet, for Minutiae Extraction Network — to learn a data-driven representation of minutiae points. By using the existing capabilities of several minutiae extraction algorithms, we establish a voting scheme to construct training data, and so train MENet in an automated fashion on a large dataset for robustness and portability, thus eliminating the need for tedious manual data labelling. We present a post-processing procedure that determines precise minutiae locations from the output of MENet. We show that MENet performs favourably in comparisons against existing minutiae extractors.
利用深度学习提取指纹细节
指纹数据的高度可变性(例如,由于质量、湿度条件和扫描仪的差异)使得提取细节的任务具有挑战性,特别是当从依赖于可调算法组件(如图像增强)的角度进行处理时。我们将细节提取作为一个机器学习问题,并提出了一个深度神经网络——MENet,用于细节提取网络——来学习细节点的数据驱动表示。通过使用几种细节提取算法的现有功能,我们建立了一个投票方案来构建训练数据,从而在大型数据集上以自动化的方式训练MENet,以实现鲁棒性和可移植性,从而消除了繁琐的手动数据标记的需要。我们提出了一个后处理程序,从MENet的输出中确定精确的细节位置。我们表明,与现有的细节提取器相比,MENet表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信