Why Stacked Models Perform Effective Collective Classification

A. Fast, David D. Jensen
{"title":"Why Stacked Models Perform Effective Collective Classification","authors":"A. Fast, David D. Jensen","doi":"10.1109/ICDM.2008.126","DOIUrl":null,"url":null,"abstract":"Collective classification techniques jointly infer all class labels of a relational data set, using the inferences about one class label to influence inferences about related class labels. Kou and Cohen recently introduced an efficient relational model based on stacking that, despite its simplicity, has equivalent accuracy to more sophisticated joint inference approaches. Using experiments on both real and synthetic data, we show that the primary cause for the performance of the stacked model is the reduction in bias from learning the stacked model on inferred labels rather than true labels. The reduction in variance due to conditional inference also contributes to the effect but it is not as strong. In addition, we show that the performance of the joint inference and stacked learners can be attributed to an implicit weighting of local and relational features at learning time.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Collective classification techniques jointly infer all class labels of a relational data set, using the inferences about one class label to influence inferences about related class labels. Kou and Cohen recently introduced an efficient relational model based on stacking that, despite its simplicity, has equivalent accuracy to more sophisticated joint inference approaches. Using experiments on both real and synthetic data, we show that the primary cause for the performance of the stacked model is the reduction in bias from learning the stacked model on inferred labels rather than true labels. The reduction in variance due to conditional inference also contributes to the effect but it is not as strong. In addition, we show that the performance of the joint inference and stacked learners can be attributed to an implicit weighting of local and relational features at learning time.
为什么堆叠模型能有效地进行集体分类
集体分类技术联合推断一个关系数据集的所有类标签,利用一个类标签的推断来影响相关类标签的推断。Kou和Cohen最近介绍了一种基于堆叠的高效关系模型,尽管它很简单,但与更复杂的联合推理方法具有相同的准确性。通过对真实和合成数据的实验,我们表明堆叠模型性能的主要原因是通过在推断标签而不是真实标签上学习堆叠模型来减少偏差。由于条件推断而导致的方差减少也有助于这种效果,但它没有那么强。此外,我们还证明了联合推理和堆叠学习器的性能可以归因于学习时局部特征和关系特征的隐式加权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信