Impact of Errors in Carbohydrate Estimation on Control of Blood Glucose in Type 1 Diabetes

Qingnan Sun, Marko V. Jankovic, S. Mougiakakou
{"title":"Impact of Errors in Carbohydrate Estimation on Control of Blood Glucose in Type 1 Diabetes","authors":"Qingnan Sun, Marko V. Jankovic, S. Mougiakakou","doi":"10.1109/NEUREL.2018.8586983","DOIUrl":null,"url":null,"abstract":"This article investigates the impact of carbohydrate (CHO) estimation error on three different algorithms for insulin treatment optimisation. The experiments were conducted using the educational version of the UVa/Padova simulator on 11 virtual adult subjects. Under different CHO estimation error levels, two ways of CHO amount announcements were investigated: numerical value and categorical value (Small, Medium, and Large). Results of experiments suggest that by low CHO estimation error, the way of CHO level announcement has low impact on algorithm quality. As the error increases more intelligent algorithmic approaches need to be investigated.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article investigates the impact of carbohydrate (CHO) estimation error on three different algorithms for insulin treatment optimisation. The experiments were conducted using the educational version of the UVa/Padova simulator on 11 virtual adult subjects. Under different CHO estimation error levels, two ways of CHO amount announcements were investigated: numerical value and categorical value (Small, Medium, and Large). Results of experiments suggest that by low CHO estimation error, the way of CHO level announcement has low impact on algorithm quality. As the error increases more intelligent algorithmic approaches need to be investigated.
碳水化合物估算误差对1型糖尿病血糖控制的影响
本文研究了碳水化合物(CHO)估计误差对胰岛素治疗优化三种不同算法的影响。实验采用UVa/Padova模拟机的教育版对11名虚拟成人受试者进行。在不同的CHO估计误差水平下,研究了两种CHO数量公告方式:数值和分类值(小、中、大)。实验结果表明,由于CHO估计误差小,CHO等级公告方式对算法质量的影响较小。随着误差的增加,需要研究更智能的算法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信