{"title":"How to ground a language for legal discourse in a prototypical perceptual semantics","authors":"L. McCarty","doi":"10.1145/2746090.2746091","DOIUrl":null,"url":null,"abstract":"In a pair of papers from 1995 and 1997, I developed a computational theory of legal argument, but left open a question about the key concept of a \"prototype.\" Contemporary trends in machine learning have now shed new light on the subject. In this paper, I will describe my recent work on \"manifold learning,\" as well as some work in progress on \"deep learning.\" Taken together, this work leads to a logical language grounded in a prototypical perceptual semantics, with implications for legal theory. The main technical contribution of the paper is a categorical logic based on the category of differential manifolds (Man), which is weaker than a logic based on the category of sets (Set) or the category of topological spaces (Top). The paper also shows how this logic can be extended to a full Language for Legal Discourse (LLD), and suggests a solution to the elusive problem of \"coherence\" in legal argument.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746090.2746091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In a pair of papers from 1995 and 1997, I developed a computational theory of legal argument, but left open a question about the key concept of a "prototype." Contemporary trends in machine learning have now shed new light on the subject. In this paper, I will describe my recent work on "manifold learning," as well as some work in progress on "deep learning." Taken together, this work leads to a logical language grounded in a prototypical perceptual semantics, with implications for legal theory. The main technical contribution of the paper is a categorical logic based on the category of differential manifolds (Man), which is weaker than a logic based on the category of sets (Set) or the category of topological spaces (Top). The paper also shows how this logic can be extended to a full Language for Legal Discourse (LLD), and suggests a solution to the elusive problem of "coherence" in legal argument.