{"title":"Causal Convolutional Neural Network-Based Kalman Filter for Speech Enhancement","authors":"S. Roy, K. Paliwal","doi":"10.1109/CSDE50874.2020.9411565","DOIUrl":null,"url":null,"abstract":"Speech enhancement using Kalman filter (KF) suffers from inaccurate estimates of the noise variance and the linear prediction coefficients (LPCs) in real-life noise conditions. This causes a degraded speech enhancement performance. In this paper, a causal convolutional neural network (CCNN) model is used to more accurately estimate the noise variance and LPC parameters of the KF for speech enhancement in real-life noise conditions. Specifically, a CCNN model gives an instantaneous estimate of the noise waveform for each noisy speech frame to compute the noise variance. Each noisy speech frame is pre-whitened by a whitening filter, which is constructed with the coefficients computed from the estimated noise. The LPC parameters are computed from the pre-whitened speech. The improved noise variance and LPCs enables the KF to minimize residual noise as well as distortion in the enhanced speech. Objective and subjective testing on NOIZEUS corpus reveal that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than some benchmark methods in various noise conditions for a wide range of SNR levels.","PeriodicalId":445708,"journal":{"name":"2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE50874.2020.9411565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Speech enhancement using Kalman filter (KF) suffers from inaccurate estimates of the noise variance and the linear prediction coefficients (LPCs) in real-life noise conditions. This causes a degraded speech enhancement performance. In this paper, a causal convolutional neural network (CCNN) model is used to more accurately estimate the noise variance and LPC parameters of the KF for speech enhancement in real-life noise conditions. Specifically, a CCNN model gives an instantaneous estimate of the noise waveform for each noisy speech frame to compute the noise variance. Each noisy speech frame is pre-whitened by a whitening filter, which is constructed with the coefficients computed from the estimated noise. The LPC parameters are computed from the pre-whitened speech. The improved noise variance and LPCs enables the KF to minimize residual noise as well as distortion in the enhanced speech. Objective and subjective testing on NOIZEUS corpus reveal that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than some benchmark methods in various noise conditions for a wide range of SNR levels.