Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratković, O. Unsal, A. Cristal
{"title":"Towards low-power embedded vector processor","authors":"Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratković, O. Unsal, A. Cristal","doi":"10.1145/2903150.2903485","DOIUrl":null,"url":null,"abstract":"In the low-end mobile processor market, power, energy and area budgets are significantly lower than in the server/desktop/laptop/high-end mobile markets. It has been shown that vector processors are a highly energy-efficient way to increase performance but adding support for them incurs area and power overheads that could not be acceptable for low-end mobile processors. In this work, we propose an integrated vector-scalar design that mostly reuses scalar hardware to support the execution of vector instructions. The key element of the design is our proposed block-based model of execution that groups vector computational instructions to execute them coordinately.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the low-end mobile processor market, power, energy and area budgets are significantly lower than in the server/desktop/laptop/high-end mobile markets. It has been shown that vector processors are a highly energy-efficient way to increase performance but adding support for them incurs area and power overheads that could not be acceptable for low-end mobile processors. In this work, we propose an integrated vector-scalar design that mostly reuses scalar hardware to support the execution of vector instructions. The key element of the design is our proposed block-based model of execution that groups vector computational instructions to execute them coordinately.