Gibbs sampling for 2D cane structure extraction from images

Ricardo D. C. Marin, T. Botterill, R. Green
{"title":"Gibbs sampling for 2D cane structure extraction from images","authors":"Ricardo D. C. Marin, T. Botterill, R. Green","doi":"10.1109/ICARA.2015.7081192","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in recovering 2D tree structure of vines from binary images. We propose a bottom-up approach that firstly segments an input image into cane parts, and second infer their connectivity by using Gibbs Sampling. Our approach is similar to previous work on vine structure inference [1], but instead of the use of heuristics for connecting cane parts, our method uses Gibbs sampling which has been successfully used in similar computer vision tasks [2]. We show comparative results against [1], and we provide directions on how this work could be extended in the future.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we are interested in recovering 2D tree structure of vines from binary images. We propose a bottom-up approach that firstly segments an input image into cane parts, and second infer their connectivity by using Gibbs Sampling. Our approach is similar to previous work on vine structure inference [1], but instead of the use of heuristics for connecting cane parts, our method uses Gibbs sampling which has been successfully used in similar computer vision tasks [2]. We show comparative results against [1], and we provide directions on how this work could be extended in the future.
基于Gibbs采样的二维藤状结构提取方法
在本文中,我们感兴趣的是从二值图像中恢复二维树形结构的藤本植物。我们提出了一种自下而上的方法,首先将输入图像分割成几个部分,然后通过吉布斯采样来推断它们的连通性。我们的方法类似于之前在藤结构推理方面的工作[1],但我们的方法不是使用启发式方法来连接藤部件,而是使用Gibbs采样,该方法已成功用于类似的计算机视觉任务[2]。我们展示了与[1]的比较结果,并提供了如何在未来扩展这项工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信