Controlling Laser Chaos

P. Glorieux
{"title":"Controlling Laser Chaos","authors":"P. Glorieux","doi":"10.1002/3527607455.CH19","DOIUrl":null,"url":null,"abstract":"In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/3527607455.CH19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.
控制激光混沌
1990年,Ott, Grebogi和Yorke描述了一种吸引人的方法(OGY),该方法将小的时间相关扰动应用于混沌系统,允许稳定不稳定的周期轨道[1]。该方法适用于无法获得系统先验分析知识的实验情况[2,3]。他们的方法假设系统的动态可以表示为由非线性映射产生的(例如,返回映射)。然后迭代由Xn+1 = F(Xn,p)给出,其中p是系统的某个可访问参数。为了控制混沌动力学,只需要学习非线性映射上期望的不稳定周期轨道(例如,不动点Xn=XF)周围的局部动力学:特别是轨道位置对p的导数。当运动在周期轨道(xn# XF)附近时,控制参数p的适当的小时间扰动允许将运动保持在不稳定的周期轨道上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信