An Efficient NPU-Aware Filter Pruning in Convolutional Neural Network

Soyoung Lee, Kyungho Kim, Jonghoon Kwak, Eunchong Lee, Sang-Seol Lee
{"title":"An Efficient NPU-Aware Filter Pruning in Convolutional Neural Network","authors":"Soyoung Lee, Kyungho Kim, Jonghoon Kwak, Eunchong Lee, Sang-Seol Lee","doi":"10.1109/ICEIC57457.2023.10049954","DOIUrl":null,"url":null,"abstract":"The neural processing unit (NPU)is a high-performance and low-power acceleration specialized in implementing artificial intelligence (AI) such as training and inference. The NPU needs a compressed network because it is used with low power and low latency to process the convolutional neural network (CNN). Therefore, in this paper, we propose an efficient NPU-aware filter pruning method for CNN to increase the efficiency of NPU. NPU-aware filter pruning is performed in multiples of the channel unit size, which is the operation unit of the NPU to reduce unnecessary computation and save memory storage space. In the experimental results with VGGNet-16 and ResNet-18 on the CIFAR10 dataset, the proposed method reduced hardware inefficient space and unnecessary computation by 1.86~6.78% compared to general pruning method without loss of accuracy.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The neural processing unit (NPU)is a high-performance and low-power acceleration specialized in implementing artificial intelligence (AI) such as training and inference. The NPU needs a compressed network because it is used with low power and low latency to process the convolutional neural network (CNN). Therefore, in this paper, we propose an efficient NPU-aware filter pruning method for CNN to increase the efficiency of NPU. NPU-aware filter pruning is performed in multiples of the channel unit size, which is the operation unit of the NPU to reduce unnecessary computation and save memory storage space. In the experimental results with VGGNet-16 and ResNet-18 on the CIFAR10 dataset, the proposed method reduced hardware inefficient space and unnecessary computation by 1.86~6.78% compared to general pruning method without loss of accuracy.
卷积神经网络中一种有效的npu感知滤波剪枝
神经处理单元(NPU)是一种高性能、低功耗的加速设备,专门用于实现人工智能(AI),如训练和推理。NPU需要一个压缩网络,因为它使用低功耗和低延迟来处理卷积神经网络(CNN)。因此,在本文中,我们提出了一种有效的NPU感知的CNN滤波剪枝方法,以提高NPU的效率。NPU感知的滤波器剪枝以NPU的操作单元通道单元大小的倍数进行,以减少不必要的计算,节省内存存储空间。VGGNet-16和ResNet-18在CIFAR10数据集上的实验结果表明,该方法在不损失精度的情况下,比一般剪枝方法减少了1.86~6.78%的硬件低效空间和不必要的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信