A 5.1ms Low-Latency Face Detection Imager with In-Memory Charge-Domain Computing of Machine-Learning Classifiers

Hyunsoo Song, Sungjin Oh, Juan Salinas, Sung-Yun Park, E. Yoon
{"title":"A 5.1ms Low-Latency Face Detection Imager with In-Memory Charge-Domain Computing of Machine-Learning Classifiers","authors":"Hyunsoo Song, Sungjin Oh, Juan Salinas, Sung-Yun Park, E. Yoon","doi":"10.23919/VLSICircuits52068.2021.9492432","DOIUrl":null,"url":null,"abstract":"We present a CMOS imager for low-latency face detection empowered by parallel imaging and computing of machine-learning (ML) classifiers. The energy-efficient parallel operation and multi-scale detection eliminate image capture delay and significantly alleviate backend computational loads. The proposed pixel architecture, composed of dynamic samplers in a global shutter (GS) pixel array, allows for energy-efficient in-memory charge-domain computing of feature extraction and classification. The illumination-invariant detection was realized by using log-Haar features. A prototype 240×240 imager achieved an on-chip face detection latency of 5.1ms with a 97.9% true positive rate and 2% false positive rate at 120fps. Moreover, a dynamic nature of in-memory computing allows an energy efficiency of 419pJ/pixel for feature extraction and classification, leading to the smallest latency-energy product of 3.66ms∙nJ/pixel with digital backend processing.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a CMOS imager for low-latency face detection empowered by parallel imaging and computing of machine-learning (ML) classifiers. The energy-efficient parallel operation and multi-scale detection eliminate image capture delay and significantly alleviate backend computational loads. The proposed pixel architecture, composed of dynamic samplers in a global shutter (GS) pixel array, allows for energy-efficient in-memory charge-domain computing of feature extraction and classification. The illumination-invariant detection was realized by using log-Haar features. A prototype 240×240 imager achieved an on-chip face detection latency of 5.1ms with a 97.9% true positive rate and 2% false positive rate at 120fps. Moreover, a dynamic nature of in-memory computing allows an energy efficiency of 419pJ/pixel for feature extraction and classification, leading to the smallest latency-energy product of 3.66ms∙nJ/pixel with digital backend processing.
基于机器学习分类器内存电荷域计算的5.1ms低延迟人脸检测成像仪
我们提出了一种CMOS成像仪,用于低延迟人脸检测,通过并行成像和机器学习(ML)分类器的计算。高效的并行运算和多尺度检测消除了图像捕获延迟,显著减轻了后端计算负荷。所提出的像素结构由全局快门(GS)像素阵列中的动态采样器组成,允许高效的内存电荷域计算特征提取和分类。利用log-Haar特征实现光照不变检测。原型240×240成像仪在120fps下实现了5.1ms的片上人脸检测延迟,真阳性率为97.9%,假阳性率为2%。此外,内存计算的动态特性允许419pJ/像素的能量效率用于特征提取和分类,导致数字后端处理的最小延迟能量积为3.66ms∙nJ/像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信