José Anatiel Gonçalves Santos Landim, E. Carvalho, J. O. Diniz, A. Sousa, Daniel S. Luz, Antônio Filho
{"title":"Detection of COVID-19 lesions based on computed tomography using U-Net 2.5D and GAN","authors":"José Anatiel Gonçalves Santos Landim, E. Carvalho, J. O. Diniz, A. Sousa, Daniel S. Luz, Antônio Filho","doi":"10.5753/sbcas.2023.229466","DOIUrl":null,"url":null,"abstract":"This paper proposes a computational method for automatically detecting suspected regions of COVID-19 from CT scans. COVID-19 has spread rapidly worldwide, infecting over 462 million people and causing over 6 million deaths. There are various methods to diagnose COVID-19, including imaging. The proposed method has five stages, including image acquisition, pre-processing, lung extraction, segmentation of suspected regions using U-Net 2.5D and Pix2Pix architectures, and result validation. The method achieved promising results, with 92% Dice for lung parenchyma segmentation, 82% Dice for suspected region segmentation using U-Net, and 71% Dice using Pix2Pix. It could potentially be integrated into clinical environments as a real aid system.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a computational method for automatically detecting suspected regions of COVID-19 from CT scans. COVID-19 has spread rapidly worldwide, infecting over 462 million people and causing over 6 million deaths. There are various methods to diagnose COVID-19, including imaging. The proposed method has five stages, including image acquisition, pre-processing, lung extraction, segmentation of suspected regions using U-Net 2.5D and Pix2Pix architectures, and result validation. The method achieved promising results, with 92% Dice for lung parenchyma segmentation, 82% Dice for suspected region segmentation using U-Net, and 71% Dice using Pix2Pix. It could potentially be integrated into clinical environments as a real aid system.