Detection of COVID-19 lesions based on computed tomography using U-Net 2.5D and GAN

José Anatiel Gonçalves Santos Landim, E. Carvalho, J. O. Diniz, A. Sousa, Daniel S. Luz, Antônio Filho
{"title":"Detection of COVID-19 lesions based on computed tomography using U-Net 2.5D and GAN","authors":"José Anatiel Gonçalves Santos Landim, E. Carvalho, J. O. Diniz, A. Sousa, Daniel S. Luz, Antônio Filho","doi":"10.5753/sbcas.2023.229466","DOIUrl":null,"url":null,"abstract":"This paper proposes a computational method for automatically detecting suspected regions of COVID-19 from CT scans. COVID-19 has spread rapidly worldwide, infecting over 462 million people and causing over 6 million deaths. There are various methods to diagnose COVID-19, including imaging. The proposed method has five stages, including image acquisition, pre-processing, lung extraction, segmentation of suspected regions using U-Net 2.5D and Pix2Pix architectures, and result validation. The method achieved promising results, with 92% Dice for lung parenchyma segmentation, 82% Dice for suspected region segmentation using U-Net, and 71% Dice using Pix2Pix. It could potentially be integrated into clinical environments as a real aid system.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a computational method for automatically detecting suspected regions of COVID-19 from CT scans. COVID-19 has spread rapidly worldwide, infecting over 462 million people and causing over 6 million deaths. There are various methods to diagnose COVID-19, including imaging. The proposed method has five stages, including image acquisition, pre-processing, lung extraction, segmentation of suspected regions using U-Net 2.5D and Pix2Pix architectures, and result validation. The method achieved promising results, with 92% Dice for lung parenchyma segmentation, 82% Dice for suspected region segmentation using U-Net, and 71% Dice using Pix2Pix. It could potentially be integrated into clinical environments as a real aid system.
基于U-Net 2.5D和GAN的计算机断层扫描检测COVID-19病变
本文提出了一种从CT扫描中自动检测COVID-19疑似区域的计算方法。COVID-19在全球迅速蔓延,感染人数超过4.62亿,造成600多万人死亡。诊断新冠肺炎有多种方法,包括影像学检查。该方法分为五个阶段,包括图像采集、预处理、肺提取、使用U-Net 2.5D和Pix2Pix架构对可疑区域进行分割以及结果验证。该方法取得了令人满意的结果,使用U-Net进行肺实质分割的Dice率为92%,使用Pix2Pix进行可疑区域分割的Dice率为82%,使用Pix2Pix进行肺实质分割的Dice率为71%。它有可能作为一个真正的辅助系统集成到临床环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信