Restoration of Time-Varying Graph Signals using Deep Algorithm Unrolling

Hayate Kojima, Hikari Noguchi, Koki Yamada, Yuichi Tanaka
{"title":"Restoration of Time-Varying Graph Signals using Deep Algorithm Unrolling","authors":"Hayate Kojima, Hikari Noguchi, Koki Yamada, Yuichi Tanaka","doi":"10.1109/ICASSP49357.2023.10094838","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a restoration method of time-varying graph signals, i.e., signals on a graph whose signal values change over time, using deep algorithm unrolling. Deep algorithm unrolling is a method that learns parameters in an iterative optimization algorithm with deep learning techniques. It is expected to improve convergence speed and accuracy while the iterative steps are still interpretable. In the proposed method, the minimization problem is formulated so that the time-varying graph signal is smooth both in time and spatial domains. The internal parameters, i.e., time domain FIR filters and regularization parameters, are learned from training data. Experimental results using synthetic data and real sea surface temperature data show that the proposed method improves signal reconstruction accuracy compared to several existing time-varying graph signal re- construction methods.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a restoration method of time-varying graph signals, i.e., signals on a graph whose signal values change over time, using deep algorithm unrolling. Deep algorithm unrolling is a method that learns parameters in an iterative optimization algorithm with deep learning techniques. It is expected to improve convergence speed and accuracy while the iterative steps are still interpretable. In the proposed method, the minimization problem is formulated so that the time-varying graph signal is smooth both in time and spatial domains. The internal parameters, i.e., time domain FIR filters and regularization parameters, are learned from training data. Experimental results using synthetic data and real sea surface temperature data show that the proposed method improves signal reconstruction accuracy compared to several existing time-varying graph signal re- construction methods.
基于深度展开算法的时变图信号恢复
在本文中,我们提出了一种时变图信号的恢复方法,即信号值随时间变化的图上的信号,使用深度算法展开。深度算法展开是一种利用深度学习技术在迭代优化算法中学习参数的方法。期望在迭代步骤仍然可解释的情况下提高收敛速度和精度。在该方法中,提出了最小化问题,使时变图信号在时间和空间上都是光滑的。内部参数,即时域FIR滤波器和正则化参数,从训练数据中学习。利用合成数据和实际海温数据进行的实验结果表明,与现有的几种时变图信号重构方法相比,该方法提高了信号重构的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信