Video Recognition of American Sign Language Using Two-Stream Convolution Neural Networks

Fikri Nugraha, E. C. Djamal
{"title":"Video Recognition of American Sign Language Using Two-Stream Convolution Neural Networks","authors":"Fikri Nugraha, E. C. Djamal","doi":"10.1109/ICEEI47359.2019.8988872","DOIUrl":null,"url":null,"abstract":"Sign language uses manual-visual to convey meaning. The style is expressed through manual sign flow in combination with non-manual elements. Sign gestures interpreted in the meaning of words, letters, and numbers. This study proposed Two-stream Convolutional Neural Networks (CNN) to recognize and classify words in hand motion images of video form. Two-stream CNN works with two processes, namely spatial and temporal stream. Spatial flow detects edges and overall global features. While temporal flow identifies local action features in stacked optical flow images of 10 frames, each stream passed Softmax function. Average Fusion function combines both of streams. Two-stream separated training reduced computing time and overcome resource limitations. In building a CNN two-stream model, a specific configuration is needed to update the weight during training such as VGG – SGD, Resnet – Adam, Resnet – SGD, Xceptionnet – Adam, and Xceptionnet – SGD. The result gave the best precision used Xceptionnet SGD of spatial flow and Xceptionnet Adam of temporal flow configuration. The architecture gave precision 89.4% of a combination of one choice or Top1 is 89.4% and 99.4% of the five choices or Top5.","PeriodicalId":236517,"journal":{"name":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEI47359.2019.8988872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Sign language uses manual-visual to convey meaning. The style is expressed through manual sign flow in combination with non-manual elements. Sign gestures interpreted in the meaning of words, letters, and numbers. This study proposed Two-stream Convolutional Neural Networks (CNN) to recognize and classify words in hand motion images of video form. Two-stream CNN works with two processes, namely spatial and temporal stream. Spatial flow detects edges and overall global features. While temporal flow identifies local action features in stacked optical flow images of 10 frames, each stream passed Softmax function. Average Fusion function combines both of streams. Two-stream separated training reduced computing time and overcome resource limitations. In building a CNN two-stream model, a specific configuration is needed to update the weight during training such as VGG – SGD, Resnet – Adam, Resnet – SGD, Xceptionnet – Adam, and Xceptionnet – SGD. The result gave the best precision used Xceptionnet SGD of spatial flow and Xceptionnet Adam of temporal flow configuration. The architecture gave precision 89.4% of a combination of one choice or Top1 is 89.4% and 99.4% of the five choices or Top5.
基于双流卷积神经网络的美国手语视频识别
手语用视觉来传达意思。通过手工符号流程与非手工元素的结合来表达风格。用文字、字母和数字的意思来解释的手势。本研究提出了双流卷积神经网络(CNN)来识别和分类视频形式的手部运动图像中的单词。双流CNN工作有两个过程,即空间流和时间流。空间流检测边缘和整体全局特征。时间流识别10帧堆叠光流图像中的局部动作特征,每个流通过Softmax函数。平均融合函数结合了这两种流。两流分离训练减少了计算时间,克服了资源限制。在构建CNN双流模型时,需要特定的配置来在训练过程中更新权值,如VGG - SGD、Resnet - Adam、Resnet - SGD、Xceptionnet - Adam和Xceptionnet - SGD。结果表明,采用Xceptionnet空间流态SGD和Xceptionnet时间流态Adam计算精度最高。该架构给出的准确率为89.4%,其中一个选择或Top1的组合为89.4%,五个选择或Top5的组合为99.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信