SCAL-E: An Auto Scaling Agent for Optimum Big Data Load Balancing in Kubernetes Environments

Efstratios Karypiadis, Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos, T. Varvarigou
{"title":"SCAL-E: An Auto Scaling Agent for Optimum Big Data Load Balancing in Kubernetes Environments","authors":"Efstratios Karypiadis, Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos, T. Varvarigou","doi":"10.1109/cits55221.2022.9832990","DOIUrl":null,"url":null,"abstract":"During the past years, the issue of effectively balancing incoming big data streams has been under serious research. It still allows for new solutions, even if load balancing is already being addressed by multiple frameworks. This paper proposes a smart agent, named “SCAL-E“ that achieves balancing of big data loads and lives within the Kubernetes Environment. SCAL-E takes advantage of MongoDB’s scaling, replicating & sharding capabilities and decides when to increase or decrease its repository’s sub-components, based on the incoming load. This way, SCAL-E assures of proper resource allocation and gives efficiency to the jobs of big data storing & forwarding.","PeriodicalId":136239,"journal":{"name":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cits55221.2022.9832990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

During the past years, the issue of effectively balancing incoming big data streams has been under serious research. It still allows for new solutions, even if load balancing is already being addressed by multiple frameworks. This paper proposes a smart agent, named “SCAL-E“ that achieves balancing of big data loads and lives within the Kubernetes Environment. SCAL-E takes advantage of MongoDB’s scaling, replicating & sharding capabilities and decides when to increase or decrease its repository’s sub-components, based on the incoming load. This way, SCAL-E assures of proper resource allocation and gives efficiency to the jobs of big data storing & forwarding.
scale - e: Kubernetes环境中实现最佳大数据负载平衡的自动缩放代理
在过去的几年里,有效平衡传入的大数据流的问题一直在认真研究。它仍然允许新的解决方案,即使多个框架已经解决了负载平衡问题。本文提出了一个名为“scale - e”的智能代理,它可以在Kubernetes环境中实现大数据负载和生存的平衡。scale - e利用MongoDB的扩展、复制和分片功能,并根据传入的负载决定何时增加或减少其存储库的子组件。这样,scale - e保证了资源的合理分配,并提高了大数据存储和转发工作的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信