{"title":"Dense Graph Partitioning on sparse and dense graphs","authors":"C. Bazgan, Katrin Casel, Pierre Cazals","doi":"10.4230/LIPIcs.SWAT.2022.13","DOIUrl":null,"url":null,"abstract":"We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\\geq 4$.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\geq 4$.