{"title":"A preliminary study on a recommender system for the job recommendation challenge","authors":"Mirko Polato, F. Aiolli","doi":"10.1145/2987538.2987549","DOIUrl":null,"url":null,"abstract":"In this paper we present our method used in the RecSys '16 Challenge.\n In particular, we propose a general collaborative filtering framework where many predictors can be cast. The framework is able to incorporate information about the content but in a collaborative fashion. Using this framework we instantiate a set of different predictors that consider different aspects of the dataset provided for the challenge. In order to merge all these aspects together, we also provide a method able to linearly combine the predictors. This method learns the weights of the predictors by solving a quadratic optimization problem.\n In the experimental section we show the performance using different predictors combinations. Results highlight the fact that the combination always outperforms the single predictor.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper we present our method used in the RecSys '16 Challenge.
In particular, we propose a general collaborative filtering framework where many predictors can be cast. The framework is able to incorporate information about the content but in a collaborative fashion. Using this framework we instantiate a set of different predictors that consider different aspects of the dataset provided for the challenge. In order to merge all these aspects together, we also provide a method able to linearly combine the predictors. This method learns the weights of the predictors by solving a quadratic optimization problem.
In the experimental section we show the performance using different predictors combinations. Results highlight the fact that the combination always outperforms the single predictor.