Evolutionary value function approximation

M. Davarynejad, J. V. Ast, J. Vrancken, J. Berg
{"title":"Evolutionary value function approximation","authors":"M. Davarynejad, J. V. Ast, J. Vrancken, J. Berg","doi":"10.1109/ADPRL.2011.5967349","DOIUrl":null,"url":null,"abstract":"The standard reinforcement learning algorithms have proven to be effective tools for letting an agent learn from its experiences generated by its interaction with an environment. In this paper an evolutionary approach is proposed to accelerate learning speed in tabular reinforcement learning algorithms. In the proposed approach, in order to accelerate the learning speed of agents, the state-value is not only approximated, but through using the concept of evolutionary algorithms, they are evolved, with extra bonus of giving each agent the opportunity to exchange its knowledge. The proposed evolutionary value function approximation, helps in moving from a single isolated learning stage to cooperative exploration of the search space and accelerating learning speed. The performance of the proposed algorithm is compared with the standard SARSA algorithm and some of its properties are discussed. The experimental analysis confirms that the proposed approach has higher convergent speed with a negligible increase in computational complexity.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"21 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The standard reinforcement learning algorithms have proven to be effective tools for letting an agent learn from its experiences generated by its interaction with an environment. In this paper an evolutionary approach is proposed to accelerate learning speed in tabular reinforcement learning algorithms. In the proposed approach, in order to accelerate the learning speed of agents, the state-value is not only approximated, but through using the concept of evolutionary algorithms, they are evolved, with extra bonus of giving each agent the opportunity to exchange its knowledge. The proposed evolutionary value function approximation, helps in moving from a single isolated learning stage to cooperative exploration of the search space and accelerating learning speed. The performance of the proposed algorithm is compared with the standard SARSA algorithm and some of its properties are discussed. The experimental analysis confirms that the proposed approach has higher convergent speed with a negligible increase in computational complexity.
演化值函数近似
标准的强化学习算法已被证明是让智能体从其与环境交互产生的经验中学习的有效工具。本文提出了一种进化方法来提高表格强化学习算法的学习速度。在该方法中,为了加快智能体的学习速度,不仅对状态值进行近似,而且通过使用进化算法的概念对状态值进行进化,并给予每个智能体交换知识的机会。提出的演化值函数近似,有助于从单个孤立的学习阶段过渡到搜索空间的合作探索,加快学习速度。将该算法的性能与标准SARSA算法进行了比较,并讨论了其一些特性。实验分析表明,该方法具有较快的收敛速度,而计算复杂度的增加可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信