Loaded and unloaded foot movement differentiation using chest mounted accelerometer signatures

C. Clements, Derek Moody, Adam W. Potter, J. Seay, R. Fellin, M. Buller
{"title":"Loaded and unloaded foot movement differentiation using chest mounted accelerometer signatures","authors":"C. Clements, Derek Moody, Adam W. Potter, J. Seay, R. Fellin, M. Buller","doi":"10.1109/BSN.2013.6575524","DOIUrl":null,"url":null,"abstract":"Heavy loads often subject foot soldiers and first-responders to increased risk musculoskeletal injury (MSI). Identifying excessive loads in real-time could help identify when soldiers are at greater risk of MSI. Using Principal Component Analysis (PCA) we derived a loaded (>35 kg) versus unloaded Naïve Bayesian classification model from 22 male Soldiers (age 20 ± 3.5 yrs, height 1.76 ± 0.09 m and weight 83 ± 13 kg). Using seven-fold cross validation we demonstrated that using only one feature our model accurately classifies heavily loaded versus unloaded over 90% of the time. This technique lends itself to use in real time accelerometry sensors and shows promise for more complex gait analysis.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Heavy loads often subject foot soldiers and first-responders to increased risk musculoskeletal injury (MSI). Identifying excessive loads in real-time could help identify when soldiers are at greater risk of MSI. Using Principal Component Analysis (PCA) we derived a loaded (>35 kg) versus unloaded Naïve Bayesian classification model from 22 male Soldiers (age 20 ± 3.5 yrs, height 1.76 ± 0.09 m and weight 83 ± 13 kg). Using seven-fold cross validation we demonstrated that using only one feature our model accurately classifies heavily loaded versus unloaded over 90% of the time. This technique lends itself to use in real time accelerometry sensors and shows promise for more complex gait analysis.
加载和卸载脚运动区分使用胸部安装的加速度计签名
重负荷经常使步兵和急救人员增加肌肉骨骼损伤(MSI)的风险。实时识别过度负荷可以帮助识别士兵何时面临更大的MSI风险。通过主成分分析(PCA),我们建立了22名男性士兵(年龄20±3.5岁,身高1.76±0.09 m,体重83±13 kg)的加载(>35 kg)与卸载(>35 kg) Naïve贝叶斯分类模型。通过七重交叉验证,我们证明了仅使用一个特征,我们的模型就能在90%的时间内准确地对重负载和卸载进行分类。这项技术可以用于实时加速度计传感器,并有望用于更复杂的步态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信