Remote vehicle state of health monitoring and its application to vehicle no-start prediction

Yilu Zhang, M. Salman, H. S. Subramania, R. Edwards, J. Correia, G. W. Gantt, Mark Rychlinksi, J. Stanford
{"title":"Remote vehicle state of health monitoring and its application to vehicle no-start prediction","authors":"Yilu Zhang, M. Salman, H. S. Subramania, R. Edwards, J. Correia, G. W. Gantt, Mark Rychlinksi, J. Stanford","doi":"10.1109/AUTEST.2009.5314011","DOIUrl":null,"url":null,"abstract":"This paper reports a recent effort at GM to develop a remote vehicle diagnostics service under a previously proposed framework of Connected Vehicle Diagnostics and Prognostics. An algorithm development methodology combining the physics-based approach and the data-driven approach is presented to identify, select, and calibrate failure precursors to predict vehicle no-start due to battery failures. Initial results based on real field data are promising. Also presented is a proposed implementation solution that supports the cost and performance optimization of remote vehicle no-start prediction.","PeriodicalId":187421,"journal":{"name":"2009 IEEE AUTOTESTCON","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2009.5314011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper reports a recent effort at GM to develop a remote vehicle diagnostics service under a previously proposed framework of Connected Vehicle Diagnostics and Prognostics. An algorithm development methodology combining the physics-based approach and the data-driven approach is presented to identify, select, and calibrate failure precursors to predict vehicle no-start due to battery failures. Initial results based on real field data are promising. Also presented is a proposed implementation solution that supports the cost and performance optimization of remote vehicle no-start prediction.
远程车辆健康状态监测及其在车辆无启动预测中的应用
本文报告了通用汽车公司最近在先前提出的联网车辆诊断和预测框架下开发远程车辆诊断服务的努力。提出了一种结合基于物理的方法和数据驱动方法的算法开发方法,用于识别、选择和校准故障前兆,以预测由于电池故障导致的车辆无法启动。基于实际现场数据的初步结果是有希望的。提出了一种支持远程车辆无启动预测的成本和性能优化的实现方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信