Understanding Differential Privacy in Non-Intrusive Load Monitoring

Haoxiang Wang, Chenyu Wu
{"title":"Understanding Differential Privacy in Non-Intrusive Load Monitoring","authors":"Haoxiang Wang, Chenyu Wu","doi":"10.1145/3396851.3403508","DOIUrl":null,"url":null,"abstract":"Smart meter devices enable the system operator to better understand the demand at the potential risk of private information leakage. One promising solution to mitigate such risk is to inject noises into the meter data to achieve certain level of differential privacy. In this paper, we cast the non-intrusive load monitoring (NILM) as a compressive sensing problem, and then seek to characterize the physical meaning of the parameters in ϵ-differential privacy in terms of the performance guarantee for NILM inference.","PeriodicalId":442966,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396851.3403508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Smart meter devices enable the system operator to better understand the demand at the potential risk of private information leakage. One promising solution to mitigate such risk is to inject noises into the meter data to achieve certain level of differential privacy. In this paper, we cast the non-intrusive load monitoring (NILM) as a compressive sensing problem, and then seek to characterize the physical meaning of the parameters in ϵ-differential privacy in terms of the performance guarantee for NILM inference.
理解非侵入式负载监控中的差异隐私
智能电表装置可让系统营办商更清楚了解市民的需求,但亦有可能引致个人资料外泄。减轻这种风险的一个有希望的解决方案是在仪表数据中注入噪声,以实现一定程度的差异隐私。在本文中,我们将非侵入式负载监控(NILM)视为压缩感知问题,然后从NILM推理的性能保证方面寻求表征ϵ-differential隐私中参数的物理含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信