Development of UCAV Fleet Autonomy by Reinforcement Learning in a Wargame Simulation Environment

B. Yuksek, Umut M. Demirezen, G. Inalhan
{"title":"Development of UCAV Fleet Autonomy by Reinforcement Learning in a Wargame Simulation Environment","authors":"B. Yuksek, Umut M. Demirezen, G. Inalhan","doi":"10.2514/6.2021-0175","DOIUrl":null,"url":null,"abstract":"In this study, we develop a machine learning based fleet autonomy for Unmanned Combat Aerial Vehicles (UCAVs) utilizing a synthetic simulation-based wargame environment. Air-craft survivability is modeled as Markov processes. Mission success metrics are developed to introduce collision avoidance and survival probability of the fleet. Flight path planning is performed utilizing the proximal policy optimization (PPO) based reinforcement learning method to obtain attack patterns with a multi-objective mission success criteria corresponding to the mission success metrics. Performance of the proposed system is evaluated by utilizing the Monte Carlo analysis in which a wider initial position interval is used when compared to the defined interval in the training phase. This provides a preliminary insight about the generalization ability of the RL agent.","PeriodicalId":165313,"journal":{"name":"AIAA Scitech 2021 Forum","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Scitech 2021 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2021-0175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we develop a machine learning based fleet autonomy for Unmanned Combat Aerial Vehicles (UCAVs) utilizing a synthetic simulation-based wargame environment. Air-craft survivability is modeled as Markov processes. Mission success metrics are developed to introduce collision avoidance and survival probability of the fleet. Flight path planning is performed utilizing the proximal policy optimization (PPO) based reinforcement learning method to obtain attack patterns with a multi-objective mission success criteria corresponding to the mission success metrics. Performance of the proposed system is evaluated by utilizing the Monte Carlo analysis in which a wider initial position interval is used when compared to the defined interval in the training phase. This provides a preliminary insight about the generalization ability of the RL agent.
在战争游戏模拟环境中通过强化学习开发 UCAV 舰队自主能力
在本研究中,我们利用基于合成模拟的战争游戏环境,为无人战斗飞行器(UCAV)开发了基于机器学习的飞行自主性。飞行器的生存能力被建模为马尔可夫过程。制定了任务成功度量标准,以引入飞行器的碰撞规避和生存概率。飞行路径规划利用基于近端策略优化(PPO)的强化学习方法进行,以获得与任务成功指标相对应的多目标任务成功标准的攻击模式。通过蒙特卡洛分析评估了拟议系统的性能,在蒙特卡洛分析中,与训练阶段确定的间隔相比,使用了更宽的初始位置间隔。这对 RL 代理的泛化能力有了初步了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信