Two-Phase Stochastic Optimization to Sensor Network Localization

M. Marks, E. Niewiadomska-Szynkiewicz
{"title":"Two-Phase Stochastic Optimization to Sensor Network Localization","authors":"M. Marks, E. Niewiadomska-Szynkiewicz","doi":"10.1109/SENSORCOMM.2007.101","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel approach to sensor network localization, i.e., two-phase algorithms based on simulated annealing and genetic algorithm. The numerical results presented and discussed in the final part of the paper show that these novel schemes give accurate and consistent location estimates of the nodes in the network. The performance is better and speed is faster than that of the semidefinite programming (SDP) and one-phase simulated annealing (SA).","PeriodicalId":161788,"journal":{"name":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORCOMM.2007.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

In this paper we describe a novel approach to sensor network localization, i.e., two-phase algorithms based on simulated annealing and genetic algorithm. The numerical results presented and discussed in the final part of the paper show that these novel schemes give accurate and consistent location estimates of the nodes in the network. The performance is better and speed is faster than that of the semidefinite programming (SDP) and one-phase simulated annealing (SA).
传感器网络定位的两相随机优化
本文提出了一种新的传感器网络定位方法,即基于模拟退火和遗传算法的两相算法。最后给出并讨论的数值结果表明,这些新方案给出了准确一致的网络节点位置估计。与半确定规划(SDP)和单相模拟退火(SA)方法相比,该方法具有更好的性能和更快的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信