Novel color, shape and texture-based scene image descriptors

S. Banerji, A. Sinha, Chengjun Liu
{"title":"Novel color, shape and texture-based scene image descriptors","authors":"S. Banerji, A. Sinha, Chengjun Liu","doi":"10.1109/ICCP.2012.6356193","DOIUrl":null,"url":null,"abstract":"This paper introduces several novel color, shape and texture-based image descriptors for scene image classification with applications to image search and retrieval. Specifically, first, a new 3-Dimensional Local Binary Pattern (3D-LBP) descriptor is proposed for color image local feature extraction. Second, a new shape descriptor (HaarHOG) is introduced by combining Haar wavelet transformation and Histogram of Oriented Gradients (HOG). Third, these descriptors are fused using an optimal feature representation technique to generate a robust 3-Dimensional LBP-HaarHOG (3DLH) descriptor that can perform well on different scene image categories. Finally, the Enhanced Fisher Model (EFM) is applied for discriminatory feature extraction and the nearest neighbor classification rule is used for image classification. The proposed descriptors and fusion technique are evaluated using three grand challenge datasets: the MIT Scene dataset, the UIUC Sports Event dataset, and a part of the Caltech 256 dataset.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces several novel color, shape and texture-based image descriptors for scene image classification with applications to image search and retrieval. Specifically, first, a new 3-Dimensional Local Binary Pattern (3D-LBP) descriptor is proposed for color image local feature extraction. Second, a new shape descriptor (HaarHOG) is introduced by combining Haar wavelet transformation and Histogram of Oriented Gradients (HOG). Third, these descriptors are fused using an optimal feature representation technique to generate a robust 3-Dimensional LBP-HaarHOG (3DLH) descriptor that can perform well on different scene image categories. Finally, the Enhanced Fisher Model (EFM) is applied for discriminatory feature extraction and the nearest neighbor classification rule is used for image classification. The proposed descriptors and fusion technique are evaluated using three grand challenge datasets: the MIT Scene dataset, the UIUC Sports Event dataset, and a part of the Caltech 256 dataset.
新颖的基于颜色、形状和纹理的场景图像描述符
介绍了几种基于颜色、形状和纹理的场景图像分类描述符,并将其应用于图像搜索和检索。首先,提出了一种新的三维局部二值模式(3D-LBP)描述符用于彩色图像的局部特征提取;其次,将Haar小波变换与定向梯度直方图(HOG)相结合,引入了一种新的形状描述子(HaarHOG);第三,使用最优特征表示技术融合这些描述符,生成鲁棒的三维LBP-HaarHOG (3DLH)描述符,该描述符可以在不同的场景图像类别上表现良好。最后,采用增强Fisher模型(Enhanced Fisher Model, EFM)进行区别特征提取,采用最近邻分类规则进行图像分类。提出的描述符和融合技术使用三个大挑战数据集进行评估:麻省理工学院场景数据集,UIUC体育事件数据集和加州理工学院256数据集的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信