Tight & Simple Load Balancing

P. Berenbrink, Tom Friedetzky, Dominik Kaaser, Peter Kling
{"title":"Tight & Simple Load Balancing","authors":"P. Berenbrink, Tom Friedetzky, Dominik Kaaser, Peter Kling","doi":"10.1109/IPDPS.2019.00080","DOIUrl":null,"url":null,"abstract":"We consider the following load balancing process for m tokens distributed arbitrarily among n nodes connected by a complete graph. In each time step a pair of nodes is selected uniformly at random. Let ℓ_1 and ℓ_2 be their respective number of tokens. The two nodes exchange tokens such that they have ⌈(ℓ_1 + ℓ_2)/2⌉ and ⌈(ℓ_1 + ℓ_2)/2⌉ tokens, respectively. We provide a simple analysis showing that this process reaches almost perfect balance within O(n log n + n log Δ) steps with high probability, where Δ is the maximal initial load difference between any two nodes. This bound is asymptotically tight.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the following load balancing process for m tokens distributed arbitrarily among n nodes connected by a complete graph. In each time step a pair of nodes is selected uniformly at random. Let ℓ_1 and ℓ_2 be their respective number of tokens. The two nodes exchange tokens such that they have ⌈(ℓ_1 + ℓ_2)/2⌉ and ⌈(ℓ_1 + ℓ_2)/2⌉ tokens, respectively. We provide a simple analysis showing that this process reaches almost perfect balance within O(n log n + n log Δ) steps with high probability, where Δ is the maximal initial load difference between any two nodes. This bound is asymptotically tight.
紧凑和简单的负载平衡
我们考虑m个令牌随机分布在由完全图连接的n个节点上的负载平衡过程。在每个时间步长中均匀随机选择一对节点。设_1和_2是它们各自的符号数。这两个节点交换令牌,使它们分别具有< <(__1 + __2)/2²和< __1 + __2)/2²令牌。我们提供了一个简单的分析,表明该过程在O(n log n + n log Δ)步内以高概率达到几乎完美的平衡,其中Δ是任意两个节点之间的最大初始负载差。这个界是渐近紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信