SRCNN-Based Enhanced Imaging for Low Frequency Radar

Yongpeng Dai, T. Jin, Yongping Song, Hao Du, Dizhi Zhao
{"title":"SRCNN-Based Enhanced Imaging for Low Frequency Radar","authors":"Yongpeng Dai, T. Jin, Yongping Song, Hao Du, Dizhi Zhao","doi":"10.23919/PIERS.2018.8597817","DOIUrl":null,"url":null,"abstract":"In this paper, the deep learning based single image super-resolution method is utilized to enhance the quality of radar image. First a sparse-coding like 3-layer convolution neural network is used to enhance the radar image, and the relationship between the convolution neural network and the sparse coding based method is discussed. Then, a deeper neural network with 6 layers is used to enhance the radar image. For both of these neural networks, the input is complex radar image, and they'll output the radar cross section distribution image. Both of these neural networks can sharpen the main lobe, suppress the sidelobe and grating lobe, while the deeper neural network has better performance. The feasibility of the proposed method is testified by simulated data.","PeriodicalId":355217,"journal":{"name":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PIERS.2018.8597817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, the deep learning based single image super-resolution method is utilized to enhance the quality of radar image. First a sparse-coding like 3-layer convolution neural network is used to enhance the radar image, and the relationship between the convolution neural network and the sparse coding based method is discussed. Then, a deeper neural network with 6 layers is used to enhance the radar image. For both of these neural networks, the input is complex radar image, and they'll output the radar cross section distribution image. Both of these neural networks can sharpen the main lobe, suppress the sidelobe and grating lobe, while the deeper neural network has better performance. The feasibility of the proposed method is testified by simulated data.
基于srcnn的低频雷达增强成像
本文利用基于深度学习的单幅图像超分辨方法来提高雷达图像的质量。首先采用一种类似稀疏编码的三层卷积神经网络对雷达图像进行增强,讨论了卷积神经网络与基于稀疏编码的方法之间的关系。然后,采用6层深度神经网络对雷达图像进行增强。这两种神经网络的输入都是复杂的雷达图像,它们将输出雷达截面分布图像。这两种神经网络都能锐化主瓣,抑制副瓣和光栅瓣,且深度越深的神经网络性能越好。仿真数据验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信