Geometry

Michael Potter
{"title":"Geometry","authors":"Michael Potter","doi":"10.4324/9781315776187-25","DOIUrl":null,"url":null,"abstract":": We study the noncommutative Riemannian geometry of the alternating group A 4 = ( Z 2 × Z 2 ) >⊳ Z 3 using the recent formulation for finite groups in [2]. We find a unique ‘Levi-Civita’ connection for the invariant metric, and find that it has Ricci-flat but nonzero Riemann curvature. We show that it is the unique Ricci-flat connection on A 4 with the standard framing (we solve the vacuum Einstein’s equation). We also propose a natural Dirac operator for the associated spin connection and solve the Dirac equation. Some of our results hold for any finite group equipped with a cyclic conjugacy class of 4 elements. In this case the exterior algebra Ω( A 4 ) has dimensions 1 : 4 : 8 : 11 : 12 : 12 : 11 : 8 : 4 : 1 with top-form 9-dimensional. We also find the noncommutative cohomology H 1 ( A 4 ) = C .","PeriodicalId":368340,"journal":{"name":"The Rise of Analytic Philosophy 1879–1930","volume":"80 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Rise of Analytic Philosophy 1879–1930","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315776187-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: We study the noncommutative Riemannian geometry of the alternating group A 4 = ( Z 2 × Z 2 ) >⊳ Z 3 using the recent formulation for finite groups in [2]. We find a unique ‘Levi-Civita’ connection for the invariant metric, and find that it has Ricci-flat but nonzero Riemann curvature. We show that it is the unique Ricci-flat connection on A 4 with the standard framing (we solve the vacuum Einstein’s equation). We also propose a natural Dirac operator for the associated spin connection and solve the Dirac equation. Some of our results hold for any finite group equipped with a cyclic conjugacy class of 4 elements. In this case the exterior algebra Ω( A 4 ) has dimensions 1 : 4 : 8 : 11 : 12 : 12 : 11 : 8 : 4 : 1 with top-form 9-dimensional. We also find the noncommutative cohomology H 1 ( A 4 ) = C .
几何
利用文献[2]中有限群的最新表述,研究了交替群4a = (z2 × z2) > * z3的非交换黎曼几何。我们为不变度规找到了一个独特的' Levi-Civita '连接,并发现它具有里奇平坦但非零的黎曼曲率。我们证明了它是a4上具有标准框架的唯一Ricci-flat连接(我们解决了真空爱因斯坦方程)。我们还提出了相关自旋连接的自然狄拉克算子,并求解了狄拉克方程。我们的一些结果对任何具有4元循环共轭类的有限群都成立。在这种情况下,外部代数Ω(a4)具有维度1:4:8:11:12:12:11:8:4:1,具有顶形式的9维。我们还发现了非交换上同调h1 (4a) = C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信