3DPC-Net: 3D Point Cloud Network for Face Anti-spoofing

Xuan Li, Jun Wan, Yi Jin, Ajian Liu, G. Guo, Stan Z. Li
{"title":"3DPC-Net: 3D Point Cloud Network for Face Anti-spoofing","authors":"Xuan Li, Jun Wan, Yi Jin, Ajian Liu, G. Guo, Stan Z. Li","doi":"10.1109/IJCB48548.2020.9304873","DOIUrl":null,"url":null,"abstract":"Face anti-spoofing plays a vital role in face recognition systems. Most deep learning-based methods directly use 2D images assisted with temporal information (i.e., motion, rPPG) or pseudo-3D information (i.e., Depth). The main drawback of the mentioned methods is that another extra network is needed to generate the depth/rPPG information to assist the backbone network for face anti-spoofing. Different from these methods, we propose a novel method named 3D Point Cloud Network (3DPC-Net). It is an encoder-decoder network that can predict the 3DPC maps to discriminate live faces from spoofing ones. The main traits of the proposed method are that: 1) It is the first time that 3DPC is used for face anti-spoofing; 2) 3DPC-Net is simple and effective and it only relies on 3DPC supervision. Extensive experiments on four databases (i.e., Oulu-NPU, SiW, CASIA-FASD, Replay Attack) have demonstrated that the 3DPC-Net is comparative to the state-of-the-art methods.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Face anti-spoofing plays a vital role in face recognition systems. Most deep learning-based methods directly use 2D images assisted with temporal information (i.e., motion, rPPG) or pseudo-3D information (i.e., Depth). The main drawback of the mentioned methods is that another extra network is needed to generate the depth/rPPG information to assist the backbone network for face anti-spoofing. Different from these methods, we propose a novel method named 3D Point Cloud Network (3DPC-Net). It is an encoder-decoder network that can predict the 3DPC maps to discriminate live faces from spoofing ones. The main traits of the proposed method are that: 1) It is the first time that 3DPC is used for face anti-spoofing; 2) 3DPC-Net is simple and effective and it only relies on 3DPC supervision. Extensive experiments on four databases (i.e., Oulu-NPU, SiW, CASIA-FASD, Replay Attack) have demonstrated that the 3DPC-Net is comparative to the state-of-the-art methods.
3DPC-Net:人脸防欺骗的三维点云网络
人脸反欺骗在人脸识别系统中起着至关重要的作用。大多数基于深度学习的方法直接使用2D图像辅助时间信息(即运动,rPPG)或伪3d信息(即深度)。上述方法的主要缺点是需要另一个额外的网络来生成深度/rPPG信息,以辅助骨干网进行面部抗欺骗。与这些方法不同,我们提出了一种新的方法——三维点云网络(3DPC-Net)。它是一个可以预测3DPC地图以区分真实人脸和欺骗人脸的编码器-解码器网络。该方法的主要特点是:1)首次将3DPC用于人脸防欺骗;2) 3DPC- net简单有效,只依赖于3DPC监管。在四个数据库(即Oulu-NPU, SiW, CASIA-FASD, Replay Attack)上进行的广泛实验表明,3DPC-Net与最先进的方法相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信