A smoothing Newton method preserving nonnegativity for solving tensor complementarity problems with $ P_0 $ mappings

Yan Li, Lu Zhang
{"title":"A smoothing Newton method preserving nonnegativity for solving tensor complementarity problems with $ P_0 $ mappings","authors":"Yan Li, Lu Zhang","doi":"10.3934/jimo.2022041","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we prove that the tensor complementarity problem with the <inline-formula><tex-math id=\"M2\">\\begin{document}$ P_0 $\\end{document}</tex-math></inline-formula> mapping on the <inline-formula><tex-math id=\"M3\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula>-dimensional nonnegative orthant is solvable and the solution set is nonempty and compact under mild assumptions. Since the involved homogeneous polynomial is a <inline-formula><tex-math id=\"M4\">\\begin{document}$ P_0 $\\end{document}</tex-math></inline-formula> mapping on the <inline-formula><tex-math id=\"M5\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula>-dimensional nonnegative orthant, the existing smoothing Newton methods are not directly used to solve this problem. So, we propose a smoothing Newton method preserving nonnegativity via a new one-dimensional line search rule for solving such problem. The global convergence is established and preliminary numerical results illustrate that the proposed algorithm is efficient and very promising.</p>","PeriodicalId":347719,"journal":{"name":"Journal of Industrial &amp; Management Optimization","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial &amp; Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we prove that the tensor complementarity problem with the \begin{document}$ P_0 $\end{document} mapping on the \begin{document}$ n $\end{document}-dimensional nonnegative orthant is solvable and the solution set is nonempty and compact under mild assumptions. Since the involved homogeneous polynomial is a \begin{document}$ P_0 $\end{document} mapping on the \begin{document}$ n $\end{document}-dimensional nonnegative orthant, the existing smoothing Newton methods are not directly used to solve this problem. So, we propose a smoothing Newton method preserving nonnegativity via a new one-dimensional line search rule for solving such problem. The global convergence is established and preliminary numerical results illustrate that the proposed algorithm is efficient and very promising.

求解具有P_0映射的张量互补问题的光滑牛顿法
In this paper, we prove that the tensor complementarity problem with the \begin{document}$ P_0 $\end{document} mapping on the \begin{document}$ n $\end{document}-dimensional nonnegative orthant is solvable and the solution set is nonempty and compact under mild assumptions. Since the involved homogeneous polynomial is a \begin{document}$ P_0 $\end{document} mapping on the \begin{document}$ n $\end{document}-dimensional nonnegative orthant, the existing smoothing Newton methods are not directly used to solve this problem. So, we propose a smoothing Newton method preserving nonnegativity via a new one-dimensional line search rule for solving such problem. The global convergence is established and preliminary numerical results illustrate that the proposed algorithm is efficient and very promising.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信