{"title":"Automatic realignment of myocardial first-pass MR perfusion images","authors":"A. Comte, A. Lalande, F. Brunotte","doi":"10.1109/ISPA.2003.1296367","DOIUrl":null,"url":null,"abstract":"Magnetic resonance first-pass imaging of a bolus of contrast agent is well adapted to distinguish normal and hypoperfused areas of the myocardium. In most cases, the signal intensity-time curves in user defined regions of interest (ROI) are studied. As image acquisition is ECG-gated, the images are acquired at the same moment in the cardiac cycle, and the basic shape of the heart is similar from one view to the next. However, superficial respiratory motion can displace the heart in the short-axis plane. The aim of this study is to correct for the respiratory motion of the heart by performing an automatic realignment of the myocardial ROI based on a method tracking the movement of the lung-myocardium interface. Visual and quantitative analyses performed on 120 curves show a very good concordance between the automatic methods and the manual one.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Magnetic resonance first-pass imaging of a bolus of contrast agent is well adapted to distinguish normal and hypoperfused areas of the myocardium. In most cases, the signal intensity-time curves in user defined regions of interest (ROI) are studied. As image acquisition is ECG-gated, the images are acquired at the same moment in the cardiac cycle, and the basic shape of the heart is similar from one view to the next. However, superficial respiratory motion can displace the heart in the short-axis plane. The aim of this study is to correct for the respiratory motion of the heart by performing an automatic realignment of the myocardial ROI based on a method tracking the movement of the lung-myocardium interface. Visual and quantitative analyses performed on 120 curves show a very good concordance between the automatic methods and the manual one.