Cross-modal Manifold Cutmix for Self-supervised Video Representation Learning

Srijan Das, M. Ryoo
{"title":"Cross-modal Manifold Cutmix for Self-supervised Video Representation Learning","authors":"Srijan Das, M. Ryoo","doi":"10.23919/MVA57639.2023.10216260","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenge of obtaining large-scale unlabelled video datasets for contrastive representation learning in real-world applications. We present a novel video augmentation technique for self-supervised learning, called Cross-Modal Manifold Cutmix (CMMC), which generates augmented samples by combining different modalities in videos. By embedding a video tesseract into another across two modalities in the feature space, our method enhances the quality of learned video representations. We perform extensive experiments on two small-scale video datasets, UCF101 and HMDB51, for action recognition and video retrieval tasks. Our approach is also shown to be effective on the NTU dataset with limited domain knowledge. Our CMMC achieves comparable performance to other self-supervised methods while using less training data for both downstream tasks.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the challenge of obtaining large-scale unlabelled video datasets for contrastive representation learning in real-world applications. We present a novel video augmentation technique for self-supervised learning, called Cross-Modal Manifold Cutmix (CMMC), which generates augmented samples by combining different modalities in videos. By embedding a video tesseract into another across two modalities in the feature space, our method enhances the quality of learned video representations. We perform extensive experiments on two small-scale video datasets, UCF101 and HMDB51, for action recognition and video retrieval tasks. Our approach is also shown to be effective on the NTU dataset with limited domain knowledge. Our CMMC achieves comparable performance to other self-supervised methods while using less training data for both downstream tasks.
自监督视频表示学习的交叉模态流形混合
在本文中,我们解决了在实际应用中获取大规模未标记视频数据集用于对比表示学习的挑战。我们提出了一种新的用于自监督学习的视频增强技术,称为跨模态流形切割混合(CMMC),它通过组合视频中的不同模态来生成增强样本。通过在特征空间中跨两种模态将一个视频块嵌入到另一个视频块中,我们的方法提高了学习到的视频表示的质量。我们在UCF101和HMDB51两个小型视频数据集上进行了广泛的实验,用于动作识别和视频检索任务。我们的方法在有限领域知识的NTU数据集上也被证明是有效的。我们的CMMC在使用更少的训练数据完成下游任务的同时,实现了与其他自监督方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信