Recent developments in sparse hyperspectral unmixing

Marian-Daniel Iordache, A. Plaza, J. Bioucas-Dias
{"title":"Recent developments in sparse hyperspectral unmixing","authors":"Marian-Daniel Iordache, A. Plaza, J. Bioucas-Dias","doi":"10.1109/IGARSS.2010.5653075","DOIUrl":null,"url":null,"abstract":"This paper explores the applicability of new sparse algorithms to perform spectral unmixing of hyperspectral images using available spectral libraries instead of resorting to well-known endmember extraction techniques widely available in the literature. Our main assumption is that it is unlikely to find pure pixels in real hyperspectral images due to available spatial resolution and mixing phenomena happening at different scales. The algorithms analyzed in our study rely on different principles, and their performance is quantitatively assessed using both simulated and real hyperspectral data sets. The experimental validation of sparse techniques conducted in this work indicates promising results of this new approach to attack the spectral unmixing problem in remotely sensed hyperspectral images.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5653075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper explores the applicability of new sparse algorithms to perform spectral unmixing of hyperspectral images using available spectral libraries instead of resorting to well-known endmember extraction techniques widely available in the literature. Our main assumption is that it is unlikely to find pure pixels in real hyperspectral images due to available spatial resolution and mixing phenomena happening at different scales. The algorithms analyzed in our study rely on different principles, and their performance is quantitatively assessed using both simulated and real hyperspectral data sets. The experimental validation of sparse techniques conducted in this work indicates promising results of this new approach to attack the spectral unmixing problem in remotely sensed hyperspectral images.
稀疏高光谱分解的最新进展
本文探讨了新的稀疏算法的适用性,利用可用的光谱库来执行高光谱图像的光谱解混,而不是诉诸于文献中广泛使用的众所周知的端元提取技术。我们的主要假设是,由于可用的空间分辨率和不同尺度上发生的混合现象,在真实的高光谱图像中不太可能找到纯像素。我们研究中分析的算法依赖于不同的原理,并使用模拟和真实的高光谱数据集定量评估了它们的性能。本文对稀疏技术的实验验证表明,该方法在解决遥感高光谱图像的光谱解混问题上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信