{"title":"TRMM observations of latent heat distribution over the Indian summer monsoon region and associated dynamics","authors":"K. Subrahmanyam, K. Kishore Kumar","doi":"10.1117/12.2223905","DOIUrl":null,"url":null,"abstract":"The latent heat released/absorbed in the Earth’s atmosphere due to phase change of water molecule plays a vital role in various atmospheric processes. It is now well established that the latent heat released in the clouds is the secondary source of energy for driving the atmosphere, the Sun being the primary. In this context, studies on latent heat released in the atmosphere become important to understand the some of the physical processes taking place in the atmosphere. One of the important implications of latent heat release is its role in driving the circulations on various temporal and spatial scales. Realizing the importance of latent heat released in the clouds, a comprehensive study is carried out to understand its role in driving the mesoscale circulation. As Indian summer monsoon (ISM) serves as natural laboratory for studying the clouds and their microphysics, an attempt is made to explore the latent heat distribution over this region using 13 years of Tropical Rainfall Measuring Mission (TRMM) observations. The observed profiles of latent heating over ISM region showed large spatial and temporal variability in the magnitude thus reflecting the presence of organization of convection on mesoscale. The latent profiles in convective and stratiform regions are segregated to study the differences in their interaction with large-scale environment. Various re-analysis dataset were used to examine the role of latent heating distribution on the mesoscale circulation. The significance of the present study lies in establishing the vertical distribution of latent heating and their impact on the background circulation.","PeriodicalId":165733,"journal":{"name":"SPIE Asia-Pacific Remote Sensing","volume":"723 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2223905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The latent heat released/absorbed in the Earth’s atmosphere due to phase change of water molecule plays a vital role in various atmospheric processes. It is now well established that the latent heat released in the clouds is the secondary source of energy for driving the atmosphere, the Sun being the primary. In this context, studies on latent heat released in the atmosphere become important to understand the some of the physical processes taking place in the atmosphere. One of the important implications of latent heat release is its role in driving the circulations on various temporal and spatial scales. Realizing the importance of latent heat released in the clouds, a comprehensive study is carried out to understand its role in driving the mesoscale circulation. As Indian summer monsoon (ISM) serves as natural laboratory for studying the clouds and their microphysics, an attempt is made to explore the latent heat distribution over this region using 13 years of Tropical Rainfall Measuring Mission (TRMM) observations. The observed profiles of latent heating over ISM region showed large spatial and temporal variability in the magnitude thus reflecting the presence of organization of convection on mesoscale. The latent profiles in convective and stratiform regions are segregated to study the differences in their interaction with large-scale environment. Various re-analysis dataset were used to examine the role of latent heating distribution on the mesoscale circulation. The significance of the present study lies in establishing the vertical distribution of latent heating and their impact on the background circulation.