Unsupervised phase detection for respiratory sounds using improved scale-space features

F. Jin, F. Sattar
{"title":"Unsupervised phase detection for respiratory sounds using improved scale-space features","authors":"F. Jin, F. Sattar","doi":"10.1109/ISSPIT.2016.7886016","DOIUrl":null,"url":null,"abstract":"Automatic respiratory sound (RS) analysis provides a possible solution for the minimization of inherent subjectivity caused by auscultation via stethoscope, and it allows a reproducible quantification of RS. As one of the crucial initial steps, reliable unsupervised respiratory phase detection plays an important role in automatic RS analysis. In this paper, a novel unsupervised phase detection scheme is proposed using improved triplet markov chain (TMC) based statistical technique. The problems of the commonly used unsupervised respiratory phase detection techniques and their improvement with the proposed discriminative features are explored. The feasibility and limitations of this advanced statistical approach for respiratory phase detection are also addressed.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic respiratory sound (RS) analysis provides a possible solution for the minimization of inherent subjectivity caused by auscultation via stethoscope, and it allows a reproducible quantification of RS. As one of the crucial initial steps, reliable unsupervised respiratory phase detection plays an important role in automatic RS analysis. In this paper, a novel unsupervised phase detection scheme is proposed using improved triplet markov chain (TMC) based statistical technique. The problems of the commonly used unsupervised respiratory phase detection techniques and their improvement with the proposed discriminative features are explored. The feasibility and limitations of this advanced statistical approach for respiratory phase detection are also addressed.
使用改进的尺度空间特征的呼吸声音的无监督相位检测
自动呼吸声(RS)分析为最大限度地减少听诊器听诊引起的固有主观性提供了可能的解决方案,并允许RS的可重复量化。可靠的无监督呼吸相位检测作为关键的初始步骤之一,在自动RS分析中起着重要作用。本文提出了一种基于改进三重态马尔可夫链(TMC)统计技术的无监督相位检测方案。探讨了常用的无监督呼吸相位检测技术存在的问题,并利用所提出的判别特征对其进行了改进。还讨论了这种用于呼吸相位检测的先进统计方法的可行性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信