Diagnose Label Errors for 3D Object Classification

Jiayue Wang, Ren Wang, Tae Sung Kim, Jin-Sung Kim, Hyuk-Jae Lee
{"title":"Diagnose Label Errors for 3D Object Classification","authors":"Jiayue Wang, Ren Wang, Tae Sung Kim, Jin-Sung Kim, Hyuk-Jae Lee","doi":"10.1109/ICEIC57457.2023.10049969","DOIUrl":null,"url":null,"abstract":"3D object classification is widely used in many real-life scenarios and has recently become a popular research area. Meanwhile, 3D datasets tend to be larger and more complex, increasing the difficulty of labeling. Since label errors in test data affect the accuracy of model evaluation and analysis, this study proposes a multi-view post-training label refinery protocol to clean the label errors in test data. Experimental results on ModelNet40 show that 4.58% of test samples are selected as label-error candidates and 29.2% of them are relabeled. On this basis, this study analyzes the weakness of ModelNet40 and provides suggestions for future dataset construction.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D object classification is widely used in many real-life scenarios and has recently become a popular research area. Meanwhile, 3D datasets tend to be larger and more complex, increasing the difficulty of labeling. Since label errors in test data affect the accuracy of model evaluation and analysis, this study proposes a multi-view post-training label refinery protocol to clean the label errors in test data. Experimental results on ModelNet40 show that 4.58% of test samples are selected as label-error candidates and 29.2% of them are relabeled. On this basis, this study analyzes the weakness of ModelNet40 and provides suggestions for future dataset construction.
诊断3D物体分类的标签错误
三维目标分类在现实生活中有着广泛的应用,近年来成为一个热门的研究领域。同时,三维数据集趋于更大、更复杂,增加了标注的难度。由于测试数据中的标签错误会影响模型评估和分析的准确性,本研究提出了一种多视图训练后标签精炼方案来清除测试数据中的标签错误。在ModelNet40上的实验结果表明,4.58%的测试样本被选择为标签错误候选样本,29.2%的测试样本被重新标记。在此基础上,本研究分析了ModelNet40的不足,并对未来的数据集构建提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信